Contents

Techniques for the Study of Placental Transport—Transfer of Chloride as an Example ... 1
R.D.H. Boyd, I.M. Doughty, J. Glazier, S. Greenwood, and C.P. Sibley

Placental Delivery of Amino Acids. Utilization and Production vs. Transport ... 21
Giacomo Meschia

Molecular Mechanisms of Placental Development 31
Michael J. Soares

Fetal Liver and the Placenta: An Interactive System 47
Frederick C. Battaglia

The Endocrine Function of the Placenta: Interactions Between Trophic Peptides and Hormones ... 59
Lise Cedard

The Endocrine Function of the Placenta: Human Placental Growth Hormone Variant .. 75
Frank Talamantes

Development of Hormone Receptors Within the Fetus 85
Russell V. Anthony, M.D. Fanning, and L.C. Richter

Regulation of Gene Expression by Nutrients During the Perinatal Period ... 103
Jean Girard, S. Hauguel-de Mouzon, F. Chatelain, P. Boileau, S. Thumelin, and J-P Pégoryer

Oxygenation In Utero: Placental Determinants and Fetal Requirements ... 123
Julie A. Owens, K.L. Kind, and J.S. Robinson
CONTENTS

Placental Transport in Fetal Growth Retardation 143
Edward S. Ogata, R.H. Lane, R.A. Simmons, and G.J. Reid

Fetal Lipid Requirements: Implications in Fetal Growth Retardation 157
Jacqueline Jumpsen, J. Van Aerde, and M. Thomas Clandinin

Maternal Lipid Metabolism and Its Implications for Fetal Growth 169
Emilio Herrera and M.A. Munilla

Oxygen Consumption and Protein Metabolism in the Human Fetus 183
Michael J. Rennie

Nutrient Supply in Human Fetal Growth Retardation 191
Anna Maria Marconi

Maternal Vascular Disease and Fetal Growth 199
Carlo Romanini and H. Valensise

Fetal Growth and Long-Term Consequences in Animal Models of Growth Retardation 215
Kathleen Holemans, L. Aerts and F.A. Van Assche

Drug Abuse 231
Doris M. Campbell

Effects of Maternal Smoking on Placental Structure and Function 247

Concluding Remarks 251

Subject Index 253
Preface

This book is the result of the 39th Nestlé Nutrition Workshop which was held at Ashdown Park Hotel in East Sussex, United Kingdom, in the spring of 1996. International experts in placental function and fetal nutrition were invited to discuss their work. The experts included basic scientists and clinical scientists. Ashdown Park provided a magnificent setting for a conference, one which encouraged informal discussion apart from the formal program.

The topic of placental function and fetal nutrition is an extremely important and timely one. The development and growth of a child is determined to a great extent by its in utero development. Fetal growth restriction, or intrauterine growth retardation, is a striking example of clinical pathology associated with placental dysfunction and fetal malnutrition. It is now clear that such effects can have long-term implications. The timeliness of this Workshop comes from the availability of new imaging and research techniques, which permit studies in human pregnancy as well as in basic research.

The conference had five sessions, in each of which a mixture of basic and clinical research topics was presented. This format led to lively exchange and discussion among basic scientists and clinicians. It was quickly apparent that a great deal of progress had been made towards understanding placental transport and metabolism and that some of the concepts which have emerged from basic research are now addressable in human pregnancies.

While many questions remain unanswered, it was clear that a far more precise description of normal fetal growth and metabolism is emerging, with the possibility of exploring how specific maternal diseases affect fetal and placental nutrition. Within the lively discussion that followed all presentations, there were suggestions with potential therapeutic application to human pregnancies.

FREDERICK C. BATTAGLIA, M.D.
Division of Perinatal Medicine
Department of Pediatrics
University of Colorado School of Medicine
Denver, Colorado, U.S.A.
Foreword

The placenta plays a central role in the nutrition of the fetus. It provides nutrients and removes waste products. Placental size and structure, developmental and pathological processes, as well as metabolic interactions with the fetus, cooperate with placental transport and metabolic mechanisms to affect placental-fetal nutrient exchange both quantitatively and qualitatively. It is generally accepted that small placental size is the major determinant of intrauterine growth retardation (IUGR) in infants. Even though placental glucose transfer appears to be unchanged in IUGR it remains unclear whether the efficiency of placental amino acids transport is altered. Lipid transport, placental hormone production, polypeptide growth factors, and signals originating from the fetus can also limit fetal growth.

The 39th Nestlé Nutrition Workshop, held in Ashdown Park, Sussex, United Kingdom and chaired by Professor F. Battaglia, allowed an interactive discussion between basic and clinically applied research in this field. It provided an opportunity not only to digest the progress made in our understanding of placental function and fetal nutrition, but also to outline the important questions for the future; among them, the prevention of IUGR and the nutritional requirements of the newborn with IUGR.

Professor F. Haschke, M.D.
Vice-President
Nestec Ltd.
Vevey, Switzerland