Subject Index

A

Access to unpublished data, 30
research in developing countries, 34
Accountability, 24–25
for injury to research subject, 43
in multicenter trials, 146
Actuarial methods, 61
Alcohol, 254, 256, 257
Aluminum toxicity, 262–263
American Academy of Pediatrics guidelines, 9
on aluminum toxicity, 262–263
on cholesterol, 260
development of, 259, 268
on diabetes mellitus risk in infant feeding, 261–262
on fluoride supplementation, 262, 268
impact of, 264–265, 267, 268–269
industry involvement, 265–266, 269
informed consent issues, 3–4
on lactose intolerance, 259–260
milk allergy report, 263–264
origins of, 2–3
performance evaluation, 267
purpose, 259, 267–268
on reimbursement for medical foods, 262
risk/benefit issues, 4–5
use of placebo controls, 6
on use of whole cow’s milk in infancy, 260
on vulnerable populations, 7
Arachidonic acid, 153–155, 156, 160, 163, 168, 174, 177, 178
Assent
basis for, 4
waiving requirements for, 14
Attrition and retention
determinants of, 123–124
dropout effects, 132–133, 134–135
long-term trials, 186
neutralizing dropout effects, 132
as outcomes, 135

B

Bayesian analysis, 59
Beccher, Henry, 2
Belmont Report, 2, 3
Blood-taking, 36
Bone metabolism, 186, 201
Bovine spongiform encephalopathy, 237
Breast-fed babies, 22, 30–31
bone metabolism, 186, 201
child–caregiver interaction, 193
confounding variables in nutrition research, 200–201
as controls in formula studies, 80, 124, 161, 162, 163
developmental patterns, 133
formula comparison to breast milk, 228, 231
long-chain-PUFA levels in, 164, 193
neurodevelopmental effects of early diet, 187–188, 191, 192–194
obstacles to research, 67, 124, 192, 199
patterns of anthropometric development, 80

C

Calcium supplements, 201
Canada, infant foods regulation in, 231–235
Central Oxford Research Ethics Committee, 107–109
Children as research subjects
basic ethical principles, 18
compensation issues, 5
historical development, 1–3, 17–19
informed consent issues, 3–4
new drug development, 8, 9
rationale, 1, 7
risk/benefit issues, 4–5
selection issues, 5, 22–23
use of placebo controls, 5–6
vulnerable populations, 6–7
Children with severe illness, 6–7

273
Subject Index

Chloride deficiency, 264–265
COMA. See Committee on Medical
Aspects of Food and Nutrition
Policy
Committee on Medical Aspects of Food
and Nutrition Policy (COMA), 19,
20
Compensation/reward, 76
as coercion, 10
ethical issues, 5
E.U. guidelines, 25–26
infant formula research, 10
informed consent and, 10–11
for injury/loss, 26
issues in developing countries, 40
non-cash, 40, 43–44
for researchers, 25–26
Competency, 22
Compliance, 124, 134, 135
Confidence intervals
alternatives, 59
applications, 61, 63–64
calculation, 51
consistency of testing and estimation
methods, 58
current reporting practice, 48, 49
data assumptions, 64–65
equivalence studies, 58
identification of parameter values, 56
misinterpretation of, 56
nonstatistical influences, 57
one-sided vs. two-sided inferences,
58–59
recommendations, 47
replication paradox, 57–58, 64
as significance test, 56
use in meta-analysis, 90
Confidentiality, 24
Council for International Organizations
of Medical Sciences, 18

crossover studies, 135
determinants of, 121–122
diarrhea studies, 126–128
efficacy assessments, 181–182
as ethical issues, 13, 19–20, 24, 36–37
feasibility studies, 135
flaws in, 129–130
for inclusion in meta-analysis, 99
infant anthropometric variables, 68–70,
81–83
infant measurement intervals, 70–75,
80
intermediate analysis, 62
for long-term outcomes, 185–186
mandatory ethics review, 26–27, 29
monitoring by ethics committees, 25,
31
multicenter trials, 138–143
one-sided vs. two-sided inferences,
58–59, 63
parenteral nutrition studies, 128–129
planning, 136
principles of infant nutrition
randomized trials, 184–186
PUFA and neurodevelopment, 161–164
PUFA effects on neurodevelopment,
176–177
qualities of meta-analyses, 86–93
quality of unpublished studies, 117
randomized controlled trials, 121,
124–126, 134
retention/attrition issues, 75–77,
123–124
safety assessments, 181–182
sample size, 52–53, 62, 63, 80–81, 123
sociocultural considerations, 33
time requirements, 122–123
use of controls from previous studies,
31
Developing countries, research in
distribution of resources, 44
ethical decision-making structure, 42,
44
ethical practice in Africa, 33–34
extra regulatory requirements for, 33
informed consent issues, 35–36, 45
medical responsibility to research
subjects, 38–39
payment of volunteers, 40
regulation of, 37–38
risk/benefit analysis, 36–37, 44–45
socioeconomic indicators, 204
therapeutic/nontherapeutic distinction, 34–35
use of experimental/novel techniques, 39–40
use of placebo controls, 40–41
Diabetes mellitus, 261–262
Diarrhea, 126–128
Docosapentaenoic acid, 155
Dropouts. See Attrition and retention
Drug labeling
dischaimers for use in children, 31–32
guidelines, 7–9

E
Economic issues
budget for multicenter trials, 137
consideration in meta-analysis, 92
cost of statistical errors, 53
reimbursement for necessary medical foods, 262
Eicosanoids, 153, 155
Eicosapentaenoic acid, 155, 156, 159, 170, 177
Eicosatrienoic acid, 155, 156
Emergency care, consent issues, 24
Enterocolitis, necrotizing, 183, 189–190, 191, 199
Environmental variables
challenges in controlling for, 203, 204, 205–210, 217–218
challenges for nutrition research, 210–212, 217–218
ethnic variation in infant reference data, 81
measurement, 212
Equivalence studies, 58, 81
Ethical practice
conceptual basis, 3, 9, 18
E.U. guidelines, 19–27
historical development in E.U., 17–19
historical development in U.S., 1–3, 9
in research design and implementation, 13, 19–20, 24, 36–37
restrictiveness of guidelines, 11–12
Ethics committees, 10–12
composition, 26
in developing countries, 42, 44
disciplinary/punitive authority, 27
expertise, 29
follow-up activities, 28
interaction with research applicants, 28–29
legal liability, 43
mandated review by, 26–27, 29
monitoring of trials in process, 25, 31
responsibilities, 26–27
risk/benefit analysis in, 13
as source of publication bias, 119
E.U. See European Union
European Union
compensation/reward guidelines, 25–26
confidentiality, 24
development of ethics guidelines, 17–19
ethical guidelines, 19–27
economics bodies, 25–26
food products research, 20–21
functional claims regulation, 248–250
health claims regulation, 244–248, 252
industry perspective on health claims regulation, 250–251
infant formula regulation, 228–229
infant formula research, 14
informed consent guidelines, 21, 22–23, 24, 37–38
nutrition claims regulation, 240–243, 245–246
nutrition labeling, 238, 239–240
risk/benefit analysis, 20
study design as ethical issue, 19–20, 24
vulnerable populations, protections for, 22–23
Evidence-based medicine, 20

F
Fatty acids. See Polyunsaturated fatty acids
Fluoride supplementation, 262, 268
Folic acid, 118–119
Food, Drug, and Cosmetic Act, 7, 220
Food and Drug Administration, 2
drug labeling guidelines, 7–9
drug vs. food product classification, 227
Final Rule, 239, 245
health claims regulation, 244–245
infant formula regulation, 226, 227–228
nutrition labeling regulation, 238–239, 242–243
rule-making procedures, 226
use of testing consultants, 226–227
Food products research
guidelines, 12–13, 14
substantial equivalence principle,
20–21
See also Infant formula research;
Research and development, food
products
Functional claims, 248–250
Funding of research projects, 25–26
distribution in multicenter trials, 146
distribution of resources in developing
countries, 44
noted in meta-analyses, 89–90
for pediatric pharmacology, 32
publishing of results and, 28
decanalization, 70
eyear nutrition and later outcomes,
183–184, 185–192, 197
fatty acid essentiality, 153–155, 156,
164
fifth centiles, 71–74, 79
growth spurts, 78–79
health claims for infant foods, 232
human milk effects, 192–194
intelligence measures, 198
iron deficiency studies, 204, 205–210,
214, 215
later suicide risk and, 201
principles of nutritional randomized
trials, 184–186
PUFA effects on neurodevelopment,
research design for, 161–164
quality of, 133–134
reference data, 67–68, 70
sample size, 80–81
statistical patterns, 79–80
timing of examinations, 70–75, 80
Infant formula research
anthropometric variables, 68–70
bone development, 201
chloride deficiency, 264–265
compensation issues, 10
design considerations, 121–124
diabetes mellitus association, 261–262
fatty acid composition, 157–160, 174
guidelines, 12–13
health claims issues, 222–223,
227–228, 254–255
hypoallergenic, 263–264
ingredients, 224
labeling regulation, 226, 229
marketing comparison to human milk,
228, 231
necrotizing enterocolitis risk, 191
neurodevelopmental effects of fatty
acids, 165–173
neurodevelopmental effects of early
diet, 187–190
patterns of anthropometric
development, 80
product labeling regulations, 219–220
regulation in Canada, 231–235
representative studies, 124–125
risk/benefit analysis, 20
safety issues, 223–224
soy formulas, 228–229
substantial equivalence principle,
20–21
toxicity, 14
Handicapped children, 6
Health claims
advertising regulation, 228
for alcohol, 254
E. U. regulation, 244–248, 252
for food products, 221
forms of, 221
industry perspective on European
regulation, 250–251
infant formula and foods, 222–223,
227–228, 231–235
population specificity, 221–222, 223
public education and, 255–256
public interest/concern, 237
regulatory framework, 219–220
rule-making procedures, 226
scientific standard for, 221, 224–225,
254
types of, for infant foods, 231–232
vs. medical claims, 244, 246
Helsinki, Declaration of, 2, 9, 18, 44
Historical practice, 1–3
development of ethics guidelines in
Europe, 17–19
infant nutrition research, 181–182
Immune response, milk intake and,
186–187, 263–264
Impedance measurement, 82
Infant development
anthropometric variables, 68–70,
81–83
breast-fed infants, 80, 133
critical period sensitivity, 183–184
I
Subject Index

<table>
<thead>
<tr>
<th>Inflammatory bowel disease, 138, 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informed consent, 76</td>
</tr>
<tr>
<td>age guidelines, 11, 35, 36, 37–38</td>
</tr>
<tr>
<td>compensation/reward issues and, 10–11</td>
</tr>
<tr>
<td>emergency medicine, 234</td>
</tr>
<tr>
<td>E.U. guidelines, 21, 22–23, 24, 37–38</td>
</tr>
<tr>
<td>forms design, 23</td>
</tr>
<tr>
<td>historical development of ethical practice, 2</td>
</tr>
<tr>
<td>indemnification statements in, 43</td>
</tr>
<tr>
<td>issues for children, 3–4</td>
</tr>
<tr>
<td>issues in developing countries, 35–36, 45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Injury/loss to research subject accountability, 43</th>
</tr>
</thead>
<tbody>
<tr>
<td>compensation, 26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institutional review boards. See Ethics committees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutionalized children, 6</td>
</tr>
<tr>
<td>IRBs (institutional review boards). See Ethics committees</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iron deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>age at onset, 214</td>
</tr>
<tr>
<td>anemia effects vs. effects of, 215</td>
</tr>
<tr>
<td>controlling for environmental factors in clinical trials of, 205–210, 217–218</td>
</tr>
<tr>
<td>developmental effects, 204, 205–210, 214, 215</td>
</tr>
<tr>
<td>infant formula claims, 229</td>
</tr>
<tr>
<td>as marker of developmental risk, 216</td>
</tr>
<tr>
<td>mental test scores and, 203–204</td>
</tr>
<tr>
<td>neurophysiological effects, 214</td>
</tr>
<tr>
<td>oral vs. intramuscular delivery, 205, 216</td>
</tr>
<tr>
<td>preventive intervention, 209–210, 214, 217–218</td>
</tr>
<tr>
<td>public health policy issues, 216–217</td>
</tr>
<tr>
<td>reversibility of effects, 204, 205–206, 208, 209</td>
</tr>
<tr>
<td>severity, 214</td>
</tr>
<tr>
<td>supplementation effects, timing of, 215–216</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose intolerance, 126, 259–260</td>
</tr>
<tr>
<td>Likelihood analysis, 59, 60</td>
</tr>
<tr>
<td>Linoleic acid, 153–155, 157, 160</td>
</tr>
<tr>
<td>Linolenic acids, 153–155, 157, 160, 164, 174, 177</td>
</tr>
<tr>
<td>Lipid function, 153</td>
</tr>
<tr>
<td>Loi Huriet, 19–20, 22–23, 25, 26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Long-chain polyunsaturated fatty acids. See Polyunsaturated fatty acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term outcomes</td>
</tr>
<tr>
<td>attrition effects, 186</td>
</tr>
<tr>
<td>continuation of studies on, 198</td>
</tr>
<tr>
<td>early nutrition and neurodevelopment, 185–192</td>
</tr>
<tr>
<td>fatty acid intake, 178, 197</td>
</tr>
<tr>
<td>food regulation and, 254</td>
</tr>
<tr>
<td>neurodevelopmental, 183–184</td>
</tr>
<tr>
<td>nutrition research, 182</td>
</tr>
<tr>
<td>research design for, 185–186</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mad cow disease, 237</td>
</tr>
<tr>
<td>Medical Research Council, 18</td>
</tr>
<tr>
<td>Melatonin, 227</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meta-analysis, 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias controls in, 89–90</td>
</tr>
<tr>
<td>combinability of data sources for, 88–89, 93</td>
</tr>
<tr>
<td>cumulative, 92</td>
</tr>
<tr>
<td>design of, 87–88</td>
</tr>
<tr>
<td>designing studies for inclusion in, 99</td>
</tr>
<tr>
<td>of diagnostic tests, 95–96</td>
</tr>
<tr>
<td>economic considerations in, 92</td>
</tr>
<tr>
<td>ethical issues, 99</td>
</tr>
<tr>
<td>identification of excluded trials, 87</td>
</tr>
<tr>
<td>interpretation of results, 102–103</td>
</tr>
<tr>
<td>literature search for, 87, 93</td>
</tr>
<tr>
<td>methodologic guidelines, 94–95</td>
</tr>
<tr>
<td>of observational studies, 96–97</td>
</tr>
<tr>
<td>original findings in, 100–101</td>
</tr>
<tr>
<td>outliers in, 101</td>
</tr>
<tr>
<td>p-value interpretation, 62</td>
</tr>
<tr>
<td>participation of original authors, 99–100</td>
</tr>
<tr>
<td>prospective, 102</td>
</tr>
<tr>
<td>protocol, 87</td>
</tr>
<tr>
<td>publication bias in, 91, 94, 100</td>
</tr>
<tr>
<td>of publication bias studies, 110–111</td>
</tr>
<tr>
<td>purpose, 85, 92–95, 99</td>
</tr>
<tr>
<td>qualities of, 86</td>
</tr>
<tr>
<td>quality of original studies, 102</td>
</tr>
<tr>
<td>quality trends, 101–102</td>
</tr>
<tr>
<td>rationale, 62</td>
</tr>
<tr>
<td>reporting of results in, 91–92, 94</td>
</tr>
<tr>
<td>review of recent studies, 85–86</td>
</tr>
<tr>
<td>sensitivity analysis in, 91</td>
</tr>
<tr>
<td>software, 97</td>
</tr>
<tr>
<td>statistical methodology, 90, 93, 97</td>
</tr>
</tbody>
</table>

Note: The document is a subject index, listing various topics and references for further reading or research. It is designed to help readers find specific information within a larger text.
Meta-analysis (cont’d)
treatment assignment methodology, 87–88
validity issues, 95
vs. multicenter trials, 99, 101, 102
vs. well-prepared single study, 100
weighting of constituent studies, 101
Multicenter trials
access to patients, 138–140, 142, 150–151
advantages, 137
budget, 137
challenges in conducting, 137
coordination, 145–146, 149
creativity in, 151
data collection procedures, 145, 148, 149
gastroenterologic research, 149–150
investigator responsibilities, 148
meta-analysis vs., 99, 101, 102
monitoring, 146
number of centers for, 143–144, 150
preliminary planning, 146–147
protocol development, 145, 148–149
protocol variations, 142–143, 199
reasons for investigator participation, 144–145, 147–148, 151
selection of setting for, 140–143
staffing for, 148

P
p values
current practice, 48–49
in hypothesis testing, 48–49
interpretation problems, 47, 51–52, 53, 61–62
null hypothesis and, 54
publication bias related to, 114, 117
Parenteral nutrition, 128–129
Pediatric Gastroenterology Collaborative Group, 137, 138, 142, 144, 145–146
Phenylketonuria, 219
Phosphorus supplements, 201
Placebo controls
ethical issues, 5–6
issues in developing countries, 40–41
in pediatric studies, 137
Polyunsaturated fatty acids
adverse effects related to, 183
anatomical distribution, 155, 163–164, 173
antioxidant protection, 161
blood composition, 163, 171–172, 173
clinical trials on supplementation, 155–164
deficiency effects, 153–154
deficiency indicators, 155, 172–173
developmental role, 153
dietary excess, 155
digestibility, 161
essentiality, 153–155, 156, 172, 173–174
fatty acid interactions, 159–160
in human milk, 156–157, 160, 161, 177–178, 179
infant formula regulation, 257
long-term developmental effects, 178, 193, 197, 200

N
National Center for Health Statistics, 67
National Commission for the Protection of Human Subjects of Biomedical Research, 2, 9
New Drug Application, 8
Nontherapeutic research
definition, 18
in developing countries, 34–35
informed consent issues, 35–36
medical care in, in developing countries, 38–39
risk/benefit analysis, 37
Nucleotides, 235
Nuremberg Code, 2, 9
Nursing women, 23
Nutrition Labeling and Education Act, 220
Nutrition research
advantages of randomized controlled trials for, 121
controlling for environmental variables, 210–212, 217–218
historical practice, 1–2, 181–182
long-term outcomes, 197–198
neurodevelopmental effects of early diet, 187–192
principles for, 184–186
public interest/concern, 237
safety issues, 182–183

278
Subject Index

neurodevelopmental findings in clinical trials, 165–174
organ functioning in processing of, 160–161
outcome variables for
 neurodevelopment studies, 163–164
oxidation, 160
pharmacologic effects in infant development, 177
preterm infant development and, 165–168
research design, 124–125
retinal collection, 178–179
selection of experimental subjects for
 research on, 161–163
sources, 157–159, 179
taurine effects, 125
toxicity risk, 177
Pregnant women, 23
Prisoners, 23
Public concerns, 237
Public education/understanding, 255–256
Publication bias, 65
 early research on, 105–106
 estimating potential for, 111–114
 ethical issues in, 119
 evidence of, 107–111, 115
 in meta-analyses, 91, 94, 100
 p values and, 114, 117
prevention strategies, 114–115, 117–118
problem of, 105
quality of unpublished studies, 117
reasons for not publishing, 108, 110
registry of unpublished studies, 115, 117, 118
researcher motivation for, 116–117
in safety studies, 116
sample size-effect size relationship in, 106
type of study associated with, 110, 115, 117, 118–119
Publishing
 access to unpublished data, 30
 censorship by research sponsor, 28
 current statistical reporting practices, 48–49
 electronic journal, 117
 as ethical responsibility, 27, 28
 multicenter trials, 144–145, 146–147
 oversimplification of results for, 133
reporting formats, 60
statistical reporting guidelines, 47, 49
PUFA. See Polyunsaturated fatty acids

R
Race/ethnicity, infant reference data, 81, 82
Reference data
 application, 82
 ethnic variation, 81, 82
 infant development, 67–68, 70
Regulation
 advertising, 228
 in developing countries, 33–34, 37–38
 drug labeling for children, 7–9
Food and Drug Administration
 procedures, 226
 of food products, 12–13, 219–221, 237–238
functional claims for nutrients, 248–250
health claims, 219–221, 244–248, 252
historical development in E.U., 17–19
historical development in U.S., 2–3, 9
of infant formula and foods, 222–223, 229, 231–235
informed consent issues for children, 3–4
interstate differences, 14
new drug development, 7–9
nutrition claims, 240–243, 245–246
rational for posteriori control, 254
of research in developing countries, 33
risk/benefit issues for children, 4–5
scientific standard, 254
specificity, 11–12, 13
Research and development, drug
developmental concerns, 15
drugs for children, 7–9, 14–15, 31–32
food product development and regulation vs., 225, 227
international differences, 29–30
regulation, 7–9
replication of studies, 29–30
Research and development, food products
drug development and regulation vs., 225, 227
efficacy assessments, 181–182
functional claims regulation, 248–250
guidelines, 12–13
health claims for food labeling, 221
Research and development, food products (cont’d)

industry motivation for promoting healthy diet, 256
international differences, 29–30
nutrition claims regulation, 240–243, 245–246
nutrition labeling, 238–240, 242–243, 254–255
regulation in Canada, 231–235
safety assessments, 181, 182–183
scientific standard for, 225, 229

Risk/benefit

appropriate body for review of, 13
categories of, 4–5, 11–12
children with severe illness, 7 contextual assessment, 11, 13–14
European principles, 18, 20–21, 22–23
issues for children, 4–5
issues in developing countries, 34–35, 36–37, 44–45
ordinary life experiences standard, 35, 44
study design issues, 13
Rotavirus vaccine, 125

S

Safety

infant formula and foods, 223–224
in infant nutrition research, 182–183, 196–197

Selection of subjects

breast-fed babies, 22
caregiver considerations, 123–124
ethical issues, 5
E.U. guidelines, 22–23
flawed practice, 130
for multicenter trials, 138–140, 142, 150–151
for PUFA research, 161–163
for randomized controlled trials, 121
restriction of entry criteria, 123
retention/attrition considerations, 75–77
vulnerable populations, 6–7

See also Size of sample

Selection of variables, 68–70
for long-term neurodevelopmental studies, 199–200
PUFA effects on neurodevelopment, research design for, 163–164
Significance testing alternatives, 59

applications, 60, 64
confidence intervals in, 56
consistency of testing and estimation methods, 58
equivalence studies, 58, 81
identifying substantive impacts, 53
logical basis for, 54
misinterpretation problems, 47, 53
multiple comparison adjustments, 65
nonstatistical influences, 57
one-sided vs. two-sided inferences, 58–59, 63
problems defining extremes in, 54–56
procedure, 50
replication paradox, 57–58
significant/not significant dichotomy, 51–52
vs. hypothesis testing, 54
Size of sample, 52–53, 62, 53
for detecting adverse effects, 182, 196–197
effect size and, as evidence of publication bias, 106
infant growth studies, 80
for neurodevelopmental studies, 132, 133
restrictiveness of entry criteria, 123

Sociocultural issues

infant reference data, 81
research in developing countries, 33
risk-benefit analysis, 14
socioeconomic indicators in developing countries, 204
surrogate decision-making, 35
Soy formulas, 228–229, 263
Stable isotope measurement, 39–40

Standard deviations

current reporting practice, 48, 49
infant development research, 79–80

Standard errors

current reporting practice, 48, 49
use in meta-analysis, 90

Substantial equivalence, 20–21

Suicide, 201

Surrogate decision-making, 3
compensation/reward and, 25
in developing countries, 25–36
E.U. principles, 21, 22–23
overriding child’s refusal of experimental treatment, 14
for vulnerable populations, 6
T
Taurine, 125, 235
Thalassemia, 215

V
Validity
as ethical issue, 13
in meta-analysis, 95
Vancouver style guidelines, 47, 49
Vitamin deficiency, 1–2
Vulnerable populations
ethics issues, 6–7

E.U. guidelines for, 22–23

W
Weight/size measurement, infant, 68–75, 79–80
later suicide risk and, 201
mean values, 81
reference data, 67–68, 70, 82–83
research goals, 121
vs. impedance measures, 82
World Health Organization, 18, 82
World Medical Association, 2