Subject Index

A
- Albumin, in human milk protein powder, 59, 60
- Alkaline phosphatase, 97, 98
- Amino acid levels
 - free, whole-blood, 161, 165, 167
 - plasma, 167–168
- Amylase, in human milk protein powder, 60
- Antibodies
 - to *E. coli*, effect of heat on, 128
 - rotavirus, 88–89
 - specific, 126
- Antitrypsin, 37
- α1-Antitrypsin, in human milk protein powder, 60
- Apolactoferrin
 - bactericidal effect of, 35–36, 94, 95–96
 - heat stability of, 95–96

B
- B lymphocytes, in human milk, 125–126
- Bacteria; see also specific type
 - apolactoferrin inhibiting and killing, 35–36, 94, 95–96
 - in bottle-fed infants’ feces, 133
 - in breast-fed infants’ feces, 133
 - in breast milk, 123, 124
 - lactoferrin inhibiting, 35, 140–141
 - and milk processing, 115, 117, 118, 123–125
 - sensitivity of, to lysozyme, 31, 32
- Bacteriological tests, and heat treatment of milk, 115–117
- Banked milk
 - containers for storage of, 105–106; see also storage containers
 - dependence on, of VLBW infant, 17
 - and growth, in comparative trials, 145–158, 173
 - and metabolic balances, 171–176
 - nutritional inadequacies of, 17, 55, 145–147, 171, 176
 - and storage temperature, 105–106
 - ultrafiltration of, 56–57
 - *Bifidobacterium bifidum* growth-promoting factors, 133, 134, 136
- Bile-salt-stimulated lipase
 - functions of, 68
 - heat denaturation of, 97–98, 99
 - in human milk protein powder, 59, 60–61
Bile-salt-stimulated lipase

contd.

inactivation of, 175

in unprocessed human milk,
and utilization of human
milk lipids, 168

Blind-loop syndrome, taurine
levels in, 66

Body fluids

lactoferrin in, 34
lactoperoxidase in, 39
thyocyanate in, 41, 42

Bone demineralization, 176

Breast, bacteria on, 124

Brush borders, attachment of
pathogens to, and LP
system, 45

Calcium

in human milk formula, 58, 60

in metabolic balance studies, 173, 176

in preterm versus term milk, 103

Calf

advantages of using, 46, 49
difficulty in using, 49
scouring of, 46-48

Carbohydrate assay techniques,
and heat treatment, 116-117

Caseins

in guinea pig milk, 74
in human milk, 74, 75-76
and viscosity of milk, 11-12

Cellulose acetate membranes, 1, 2, 7-8

Cheesemaking, ultrafiltration in,
13-14

Citrate, in milk, and bacteria, 35

Cholera toxin, in study of
nonimmunoglobulin activity
against *E. coli* heat-labile
enterotoxin, 86, 87-88

Clinical trials

explanatory, 179, 180, 181, 182

need for, 179

pragmatic, 179-180

problems with, 145-158, 179, 182

Cloning, of proteins, 73-84

CM80 Pasteurizer, 114, 115, 116, 119

Collection of human milk, 104-105, 113, 163

Colostrum, human

inhibition of *E. coli* heat-labile
enterotoxin by, 88

lactoferrin in, 34, 36, 94

lysozyme in, 30

in protection against
infections, 85, 129-130

raw, in reducing prevalence of
infections, 129-130

RSV-specific IgA in, 89

secretory IgA in, 45

and storage containers, 128

Complement components, in
human milk, 125, 127

Conalbumin, for infant diarrhea,
34, 38

Concentration factor, in
ultrafiltration, 12, 13

Concentration polarization, 4-5

Congestive heart failure, liberal
fluid regimens in, 103

Cow's milk

composition of, 10
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>inhibition of E. coli heat-labile enterotoxin by, 87, 88</td>
</tr>
<tr>
<td>lysozyme in, 30–31, 32</td>
</tr>
<tr>
<td>molecular sizes of components of, 11</td>
</tr>
<tr>
<td>peroxidative activity of, 40</td>
</tr>
<tr>
<td>preparation of milk immunoglobulin concentrate from, 17–28</td>
</tr>
<tr>
<td>ultrafiltration of, 1–16</td>
</tr>
<tr>
<td>Cream fraction; see also Fat in fortification of human milk, 107–111, 165, 168</td>
</tr>
<tr>
<td>preparation of, 106, 107, 163</td>
</tr>
<tr>
<td>Cytomegalovirus in breast milk, 124–125</td>
</tr>
<tr>
<td>destruction of, in preparation of milk fractions, 106</td>
</tr>
</tbody>
</table>

D
- Diafiltration, 6–7, 22–23
- Diarrhea, infant and attachment of pathogens to intestines, 45
 - conalbumin for, 34, 38
 - lactotransferrin for, 141
 - P$_{7-8}$ fraction for, 140
 - secretory IgA for 141
- Digestibility of proteins, effect of heat on, 96
 - of secretory IgA, effect of heat on, 96–97, 98

E
- *E. coli* apolactoferrin in inhibition of growth of, 85–96
- lactoferrin in suppression of, 37–38
- *E. coli* heat-labile enterotoxin, inhibitory activity of, 85, 86, 87–88, 91
- Egg albumin lysozyme, 31
 - of preterm milk, 55, 102–103
 - of term milk, 102–103
- Energy requirements, of VLBW infants, 17, 101, 145, 168
- Energy utilization, 156
- Enzymes; see also specific name in human milk protein powder, 59, 60
- Epidermal growth factor, 67
- Ethanolamine, 66

F
- Fat; see also Cream fraction absorption of, 173, 175–176
 - added to human milk, 160, 163, 165, 168
- inhibition of *E. coli* heat-labile enterotoxin by, 87–88
- preparation of, from banked milk, 56
- Fat globules, attachment of pathogens to, and LP system, 45
- Fatty acids, free, in control of viral infections, 127
- Feces of bottle-fed infants, 133
 - of breast-fed infants, 31, 33, 133, 140
- Filter range, 2
Formula, see Human milk formula; Infant formula; Low-birth-weight infant formula
Freezing, of human milk, 129

G
Ganglioside inhibitory activity, 87–88
Gastrointestinal tract; see also Diarrhea, infant; Intestinal infections
enzymes active in, 68–69
γ-Glutamyltranspeptidase, 68, 69
Growth; see also Weight gain
difficulty in measuring, 145–146, 149–150
and human milk formula versus
unaltered pooled human milk, 147, 149, 150–154
and intrauterine growth standards, 101, 154
rates, 101, 163, 165
Growth modulators, in human milk, 63–71
assay of, by cell culture systems, 64–65
protein, 66–67
taurine as, 65–66
Guinea pig milk
and antibacterial activity of lactoferrin, 37–38
casein components in, 74
cloning proteins from, 73–84

H
Head circumference measurements, 149

Heat treatment
and amount of milk per year, 120
and bacteriological tests, 115, 117
and bacteriology, 118
of donor milk, question of, 157
and immune factors, 93–97, 115–117, 118, 119, 123, 128–129
methods of, 113–118
and specific proteins, 93–100, 115–117, 118, 119, 123, 128
and vitamin C, 157
and volume of milk, 120
Hepatitis B surface antigen, in breast milk, 124
Herpes simplex virus, nonlipid fractions active against, 127
Herpes virus, in breast milk, 124, 125
Holder pasteurization equipment, 114, 115, 116, 118, 119, 123, 128
Human milk; see also Banked human milk; human milk formula; Preterm milk; Term milk
cloning proteins form, 73–84
growth modulators in, 63–71
LP system in preservation of, 48–49
nonimmunoglobulin inhibitory activity of, 85–92
pathogens in, 123–125
peroxidative activity of, 39–40, 46
protein content of, 63
raw, in reducing prevalence of infections, 129–130

Human milk formula
comparative trials of, practical problems in, 145–158
composition of, 58, 60, 172
energy content of, 106, 107, 108, 110, 148
evaluation of, 106–111, 149–157, 163–168, 182
and metabolic balance studies, 171–176
osmolality of, 58, 60
and preparation of human milk fractions, 106–107, 147–148, 149–157
protein powder in, 58, 60–61, 148

Hydrogen peroxide
distribution of, 39, 41–42, 43, 50
-producing organisms, and activation of LP system, 46

Hypertyrosinemia, 156–157
Hypothiocyanite, 42, 43

I
IgA; see also Secretory IgA;
Total IgA
ingested, unknown fate of, 126
and macrophages, 125
respiratory syncytial virus specific-, 89, 90
secreted by B lymphocytes, 126

IgD, 126
IgE, 126, 128
IgG, 126, 128
IgM, 126, 128

Immune factors; see also specific name; type
and heat treatment, 93–97, 115–117, 123, 128–129
and storage containers, 105
and storage temperature, 105–106

Immunoglobulin concentrate, from cow's milk, 17–28

Immunoglobulins; see also specific name
B lymphocytes secreting, 126

Infant, see Preterm infant; Very-low-birth weight infant

Infant formula
conalbumin in, 38
inhibition of E. coli heat-labile enterotoxin by, 87, 88
lysozyme-containing, 33
protective immune factors absent from, 18
proteins in, 63

Infections, see specific type

Interferon(s)
free, milk lymphocytes producing, 127
in human milk, 69

Intestinal infections; see also Diarrhea, infant
colostrum in prevention of, 85
and lactotransferrin complexes, 140–141
and protective function of human milk, 133–134
secretory IgA in prevention of, 29, 85, 126
weaning followed by, 50

Intrauterine growth rates and standards, 101, 154
Iron-binding capacity, 116, 117, 119, 140, 141
and heat treatment, 116, 117, 119

L
α-Lactalbumin
in guinea pig milk, 74
in human milk protein powder, 59, 60
and lactose synthesis, 74
and lysozyme, evolving from common ancestral gene, 74, 82
as marker for diagnosis of breast cancer, 74
nucleotide sequence of, 79–82
proposed production of, by ultrafiltration, 15–16
Lactic acid bacteria, 42, 43, 50
Lactoengineering, human milk, 171, 176; see also Processing, milk defined, 147
method of, 147–148, 163
Lactoferrin, 33–38; see also Apolactoferrin; Lactotransferrin
antibacterial activity of, in vivo, 37–38
biological significance of, 34, 36–37
in body fluids, 34
chemical properties and antibacterial effect of, 34–35
in colostrum, 34, 36, 94
decline in, during lactation, 104, 127
and heat treatment, 94–96, 98, 115, 116, 117, 119, 128
in human milk protein powder, 59, 60
in preterm milk, over time, 104
and storage containers, 128
in term milk, over time, 104
Lactoperoxidase
distribution of, 39–40, 127
salivary, 40, 46, 50, 127
Lactoperoxidase system, 38–40; see also specific component
biological significance of, 46, 127
distribution of components of, 39–42
mode of action of, 36, 43–45
practical applications of, 46–49
Lactose
milk low in, 6–7
removal of, 6–7, 10
retention of, 12
synthesis of, and α-lactoalbumin, 74
uses of, 15
Lactotransferrin; see also Lactoferrin
bacteriostatic activity of, 140
estimation of, 135
in feces of breast-fed infant, 140
milk supplemented with, 141
in P7-8 fraction, 136
Lactotransferrin-glycopeptide complex, 138–139, 141
Lactotransferrin-lysozyme complex, 135, 137–138, 139
Leukocytes, milk, 39
 heat’s effect of, 128
 hydrogen peroxide generated by, 41–42
 and lysozyme, 33
 in preterm milk, over time, 104
 in term milk, over time, 104
Linear growth, in comparative trials, 149, 153–154, 155
Low-birth-weight infant formula and metabolic balances, 171–177
 and weight gain, 173, 175
Lymphocytes, in breast milk, 125–126
 free interferon stimulated by, 127
 and storage temperature, 105
Lyon Pasteurizer, 114, 115, 116, 117, 118, 119
Lysozyme, 30–33
 antibacterial spectrum of, 31, 32
 biological significance of, 31, 33
 in colostrum, 30
 in feces of breast-fed infant, 31, 33
 and heat treatment of milk, 116, 117, 119
 in human milk protein powder, 59, 60
 identification of, 135
 and α-lactalbumin, evolving from common ancestral gene, 74, 82
 mode of action of, 31
 in ρ7–8 fraction, 136
 in preterm milk, over time, 104
 rise in, during lactation, 104, 127
 and storage containers, 128
 in term milk, over time, 104
M
 Macrophages, in human milk, 125
Magnesium, in metabolic balance studies, 174, 175, 176
Milk, see specific type
Milk fractions; see also specific type
 bacterial activities of, 135, 136, 137
 composition of, 135–136
 identification and estimation of, 135
 isolation of, 134–135
Milk immunoglobulin concentrate, from cow’s milk
 rationale for, 18–20
 technology of preparation of, 20–28
Membranes, ultrafiltration
 cellulose acetate, 1, 2, 7–8
 composition and structure of, 1, 2, 3, 7–8, 22, 23
 geometry of, 9
 molecular weight cut-off levels of, 9, 15, 16
 polysofone, 8
 recent developments in, 15–16
 solids deposited on, 4, 5
 zirconium oxide, 8
Metabolic balance studies, 171–176
Monoglycerides, in control of bacterial infections, 127
Multivitamin suspensions, 157

N
Nerve growth factor, 67
Neutrophils, 125
Nitrogen
in fortified human milk, 107, 109–110
in metabolic balance studies, 173, 175, 176
Nonantibody proteins, in milk; see also specific name and protection of newborn, 29–53
Nonimmunoglobulin inhibitory activity, of human milk, 85–92
against E. coli heat-labile enterotoxin, 85, 86, 87–88, 91
against respiratory syncytial virus, 85, 86–87, 89–90, 91
against rotavirus, 85, 86, 88–89, 91
Nosocomial infections, 18, 180, 181
Nutrient intake, gross, and weight gain, 155–156

O
Osmosis, reverse, 1
Overfeeding, 103
and brain damage, 159, 160
Oxford Human Milk Pasteurizer, 114, 115, 116, 117, 118, 119
Oxyacids, 42, 43

P
P7.8 fraction, 136–137, 138, 139
for acute diarrhea, 140
P10 fraction, 138, 139
Pasteurization, see Heat treatment
Patent ductus arteriosus, liberal fluid regimens in, 103
Pathogens; see also specific name; type attachment to brush borders, and LP system, 45
attachment to milk fat globules, and LP system, 45
in breast milk, 123–125
commensal, 123, 124
potential, 123, 124
secretory IgA in prevention of attachment of, 45
Permeate flux, 3–4, 5, 12, 13
pH, and protein survival during heat treatment, 119
Phosphate supplementation, of milk, 176
Phosphoethanolamine, 66
Phosphorus
in metabolic balance studies, 173–174, 176
in preterm versus term milk, 103
Plants, as source of thiocyanate, 41
Polyethylene storage containers, 105, 128
SUBJECT INDEX

Polypropylene storage containers, 105, 128
Polysulfone membranes, 8
Potassium, in human milk formula, 58, 60
Preterm infant, nutritional inadequacies of human milk for, 55
Preterm milk
composition of, 55, 102, 103, 165
energy density of, 55, 102–103
human milk factors added to, 106–111
immunologic components of, 104
nutritional inadequacies of, for preterm infant, 55
Processing, milk; see also specific component
and loss of immune factors, 94–97, 125–130
and pathogens, 115, 117, 118, 123–125
preserving growth modulators during, 64, 67, 69, 70
Protein(s); see also specific type
classification of, 74
cloning of, from milk, 73–84
digestibility of, 96
heat’s effect of, 93–100, 115–117, 118, 119, 123, 128
in human milk, 63
identification and estimation of, 135
in infant formula, 63
nonantibody, in milk, 29–53
in preterm human milk, 55, 165
requirements, of VLBW infant, 17, 101, 145, 159–169
Protein assay techniques, 115–117
Protein growth modulators, in human milk, 66–67
Protein N, in preterm versus term milk, 102
Protein powder, human milk; see also Human milk formula
composition of, 58, 59, 60–61, 163
osmolality of, 58
preparation of, 56–58, 147–148, 163
Pyrex® storage containers, 105

R
Respiratory disorders, chronic, fluid restriction in, 103
Respiratory syncytial virus
inhibitory activity, by nonimmunoglobulins, 85, 86–87, 89–90, 91
-specific IgA, 89, 90
Reverse osmosis, 1
Rotavirus
antibodies, 88–89
inhibitory activity, by nonimmunoglobulins, 85, 86, 88–89, 91
nonlipid fractions active against, 127
Rubella virus, in breast milk, 124
Salivary lactoperoxidase, 40, 46, 50, 127

Secretory component, in P_{7.8} fraction, 136

Secretory IgA
 in colostrum, 45
 in defense against intestinal infections, 29, 45, 85, 126, 182, 183
digestibility of, and heat treatment, 96–97, 98
 in feces of infants fed lysozyme-containing formula, 33
 and heat treatment, 93, 98, 115, 116, 117, 118
 in human milk protein powder, 59, 60, 167
 in milk, 45
 objective evidence needed about, for VLBW infants, 182–183
 in preterm milk, over time, 104
 and storage containers, 105, 128
 in term milk, over time, 104

Skim fractions
 in fortification of human milk, 107–110
 preparation of, 106–107, 147–148

Skimmed milk
 cow’s, 12, 13, 87
 human, 87

Sodium
 in human milk, 55, 58, 60
 in human milk formula, 58, 60
 in preterm milk, 55

Sodium chloride supplements, and growth, 163, 165

Storage containers
 and immune components, 105, 128
 and length of storage, 105, 106
 and temperature, 105

Sulfhydryl oxidases, in human milk, 68–69

Taurine, 65–66

Temperature; see also Heat treatment
 storage, and immunologic factors, 105–106
 and storage containers, 105

Term milk
 composition of, 102, 103
 energy density of, 102–103
 immunologic components of, 104

Thiocyanate
 distribution of, 39, 40–41
 oxidation products of, 42–43

Thonon High-Temperature, Short-Time Pasteurizer, 115, 116, 118, 120

T lymphocytes, in human milk, 125–126

Total IgA
 heat’s effect of, 128
 in preterm milk, over time, 104
 in term milk, over time, 104

Total parenteral nutrition, prolonged, taurine levels during, 66

Transferrin, 34, 35, 37
Triacylglycerols, milk, bile-salt-stimulated lipase in digestion of, 69
Tyndalizer, 114, 115, 116, 117
Tyrosine
 as indicator of protein overload, 161
plasma, 156–157

U
Ultrafiltration, of banked human milk, 56–57
Ultrafiltration, of cow's milk, 1–16
 applications of, in dairying, 13–15
 defined, 1
 milk properties relevant to, 10–12
 plant and operation, 9–10
 in preparation of milk immunoglobulin concentrate, 22–23, 24
 process of, 2–6
 rate of, 12–13
Underfeeding, and brain damage, 159, 160

V
Very-low-birth-weight infant
 dependence of, on banked human milk, 17
 difficulty in measuring growth of, 145–146
 energy requirements of, 17, 101, 145, 168
 human milk formula for, 61, 106–111, 149–157, 163–168, 172, 182
 metabolic balances in, 171–177
 nutritional requirements of, unanswered question of, 55, 101
 pasteurization of human donor milk for, question of, 180–181
 protein requirements of, 17, 101, 145, 159–169
 and tests of milk constituents, 182–183
 unaltered pooled human milk for, and human milk formula, comparative trials of, 145–148
 and volume of feeding, 103, 159, 160
Vesicular stomatitis virus, 127
Viruses; see also specific name; type
 in breast milk, 124–125
 control of infections caused by, 127
 and interferon, 69, 127
Viscosity
 of milk, and ultrafiltration, 11–12
 of skimmed milk, 12
Vitamin C
 in expressed breast milk, 157
 and heat treatment of milk, 157
 in pooled drip breast milk, 157
 supplementary, 157
 and storage temperature, 105
Vitamin D intake, and calcium absorption, 176

W
Weaning
 and changes in milk immunologic components, 104
SUBJECT INDEX

Weaning (contd.)
- and changes in milk nutrients, 103
- intestinal infections following, 50

Weight, birth, time taken to regain, 154, 155

Weight gain
- with banked human milk, 173, 175
- in calves, and LP system feeding, 47–48
- in comparative trials, 149, 151, 152, 153, 154–155
- and gross nutrient intake in individual infants, relationship between, 155–156

Weight loss, early, 154

Whey
- concentration of, 13
- proteins, in human milk protein powder, 59, 60
- ultrafiltration of, 13–15

Z
- Zirconium oxide membranes, 8