Subject Index

Note: Page numbers followed by “f” indicate figures; those followed by “t” indicate tables.

A
Abdominal obesity, 369
Acquired immunodeficiency syndrome (AIDS).
 See Human immunodeficiency virus (HIV)
Activity level, stunting and, 247
Adaptation design, 376
Adiposity rebound, 64–65
Adolescent catchup growth, 262–264, 263f, 264f
 prepubertal stunting with, 263–264, 264f
 prepubertal stunting without, 264–269, 265f–269f
Adolescent growth
 ethnic differences in, 7–10, 8f–10f
 international growth references for, 10–11
Adolescent pregnancy, birthweight with, 102
Adoption
 and linear growth retardation, 248–249
 prepubertal catchup growth with, 261–262, 261f, 347
Adult literacy rate
 female, and stunting, 89, 95
 in Latin America, 306, 306t
 in Sub-Saharan Africa, 313
Africa
 adult literacy rate in, 313
 growth of school-age children in, 266–268, 267f–269f
 malnutrition in, 397, 398
 orphans in, 396–397
 overweight and obesity in
 by gross national product, 362f
 percentage of, 355, 355f, 356t, 359f, 360t
 social factors and, 364t
 stunting and, 363f
 stunting in
 age trends in, 133, 134f
 numbers of children affected by, 88, 88t
 percentage of, 87, 87t, 356c, 357
 in urban vs. rural areas, 125–126, 125f, 131t–132t, 133–134, 134t
 wasting and, 128
 wasting in, 126, 127f, 128, 137, 138f
 weight for age and infant mortality in, 227f
 African-origin populations
 prepubertal growth in, 4, 5f
 pubertal growth in, 8–9, 8f, 9f
Age
 maternal, and birthweight, 240
 overweight by, 355, 355f
 Age at peak height velocity, ethnic differences in, 8–9, 8f–10f, 19
 Age trends, in growth faltering
 linear growth retardation and stunting,
 129–136, 130f, 131t–132t, 134f–136f, 155–156
 summary of findings on, 137–141, 150–151
 weight-for-height and wasting, 137, 138f, 139f
AIDS. See Human immunodeficiency virus (HIV)
Air pollution
 and intrauterine growth retardation, 101–102
 in transitional societies, 317
Albumin, serum, with breast-feeding vs. reduced-protein formula, 79–80, 80t
Albuterol, and growth of school-age children, 271t
Alli Alimentu, 290–291
Altitude, and birthweight, 239–240
Amino acid composition, of breast milk vs.
 formula, 76, 77, 77t
Anemia
 and cognition, 256
 infection and, 210, 211
Animal foods
 in Latin American diet, 308–310, 309f
 in transitional societies, 319
Antihelmintic treatment, 220
 and growth of school-age children, 271, 271t, 272, 272t
Arginine, in formula, 77, 77t
Arm length, 157
Ascariasis, and nutrition, 209, 210
Asia
 stunting in
 number of children affected by, 88, 88t
 prevalence of, 87, 87t
 in urban vs. rural areas, 125, 125f, 126, 132t, 135–136, 135f
 wasting and, 128
Asia (contd.)
 wasting in, 126, 127f, 128, 137, 139f
 weight for age and infant mortality in,
 226–229, 227f, 235–236
 “Asian enigma,” 128–129
Asian paradox, 226–229, 235–236
Asiatic populations
 prepubertal growth in, 4, 5f, 6–7, 7f
 pubertal growth in, 8–9, 8f, 9f, 10
 soya consumption and puberty in, 16
Atherosclerosis risk, birthweight and, 334, 348
Atole, 148–149, 149f, 155, 156, 285, 290, 381

B
Baby-friendly hospital initiative, 316
Bangladesh
 efficacy study of dietary intake in, 379, 380t, 381
 low birthweight and infant mortality in, 229
 overweight and obesity in, 356f, 364t, 369
 stunting in, 132t, 135, 135f, 356t
 wasting in, 127, 127f, 137, 139f
Bangladesh Integrated Nutrition Project, 113
Bayley Behavior Record, height and, 247
Behavior, linear growth retardation and,
 247–248
Behavioral issue, obesity as, 372, 397
Benin
 overweight and obesity in, 355f, 356t, 364t
 stunting in, 356t
 wasting in, 126, 127f, 137
 weight-for-height in, 137
Bienestarina, 290, 291
Birthweight
 and adult body mass index, 341–342
 vs. alternative measures, 339
 altitude and, 239–240
 and atherosclerosis risk, 334–335, 348
 and blood pressure, 334, 341
 and coronary heart disease mortality, 334
 and diabetes, 335
 for gestational age
 and intrauterine growth retardation, 97
 and perinatal mortality, 231–234, 233t,
 236–238
 low
 and child malnutrition, 399
 growth reference for, 25–27, 26f, 34
 and infant mortality, 223–240
 and intrauterine growth retardation, 97–98
 “low-risk” vs. “high-risk” causes of,
 224–226, 228f, 229, 231, 235, 236, 239
 and neonatal mortality, 231, 232f
maternal age and, 240
nutrition and, 103–114
 interventions for, 104–105, 110–114,
 119–121
 macronutrients in, 105–106
 micronutrients in, 106–110, 106t, 107f, 109f
 minerals in, 106t, 108–110, 109f, 111–112
 preconceptional, 103–105
 during pregnancy, 105–114
 in South Asia, 313–314
 vitamins in, 106–108, 106t, 107f, 111–112
 and obesity, 335, 342
 in programming hypothesis, 336–337
 sociodemographic and genetic factors
 affecting, 102–103
Blood pressure, birthweight and, 334, 341–342
Body mass index (BMI)
 at 1 month, as predictor of obesity, 60–61, 61f
 adult, birthweight and, 341–342
 for age, in growth reference, 29, 34
 with breast-feeding, 71
 vs. reduced-protein formula, 79, 79t, 81
 as indicator of obesity, 71, 369, 370–371
 maternal
 and intrauterine growth retardation,
 103–104
 as predictor of obesity, 63
 NHANES I standards for, 272, 272t
Bolivia
 linear growth retardation and stunting in, 129,
 131t, 356t
 overweight and obesity in, 356t, 360t, 361t,
 364t
Bone modeling, infection and, 212
Brazil
 linear growth retardation and stunting in, 129,
 130, 130f, 131t, 356t
 overweight and obesity in, 356t, 360t, 361f,
 364t
Breast-feeding
 and body mass index, 71
 and cytokines, 51–52
 in Euro-Growth study, 55–58, 56f, 57f
 duration of, 58–60, 58t, 59f, 59t
 and growth, 37–52
 assessment of adequacy of, 44–45
 with complementary feeding, 42–43, 51
 discussion on, 49–52
 duration of, 41–43
 in first year, 37–41, 38f–40f, 40t, 47
 linear, 51
 long-term, 43, 50
mechanisms to explain, 44
policy implications of, 47
protocol for studying, 50–51
research recommendations on, 45–47
in transitional societies, 315–316, 315t, 316t
and growth reference, 25, 37–41, 38f–40f, 40t, 45, 46–47, 49–50, 52
during infection, 209
and obesity and overweight, 43, 44, 45–46, 47, 64–65, 67–72, 365
programming research on, 340
protein intake from, 44, 50, 72, 74–75, 75t, 81
socioeconomic status and, 49–50, 52
in transitional societies, 315–316, 315t, 316t, 330
WHO recommendations on, 53
Breast milk
growth factors in, 44, 51
hormones in, 44
and obesity, 71–72
protein content of, 73–74
Burkina Faso
effectiveness studies of complementary
feeding in, 383t, 389t
stunting, overweight, and obesity in, 355f, 356t, 364t
weight-for-height and wasting in, 137
Burundi, stunting, obesity, and overweight in,
355f, 356t, 364t
Caribbean
overweight and obesity in, 356t, 359f, 360t, 362f, 364t
stunting in, 87, 87t, 88, 88t, 356t
Catchup growth
late, 262–264, 263f, 264f
prepubertal stunting with, 263–264, 264f
prepubertal stunting without, 264–269, 265f–269f
prepubertal, 261–262, 261f, 347
Cebu study, 340, 347–348, 350
Centers for Disease Control and Prevention
(CDC), growth reference of, 21, 22, 23
Central African Republic, stunting, overweight, and obesity in, 355f, 356t, 364t
Central America. See also Latin America
stunting in, 87, 87t, 88, 88t, 89–90, 90f, 92
weight for age and infant mortality in, 227f
Chad
stunting, overweight, and obesity in, 355f, 356t, 364t
wasting in, 126, 127, 127f
Child development, model of, 310, 311t
Child growth. See also School-age children
breast-feeding and, 315–317, 315t, 316t
care of women and children and, 313
gender issues and, 313–314
household food security and, 311–312, 312f
old and new conditioning factors of, 310–317
women’s work and, 314
Child mortality, weight for age and, 229–231, 230f
Child size
and child mortality, 229–231, 230f, 235–236
variance in, 235
Chile
breast-feeding in, 315–316, 315t, 316t
complementary feeding in, 300–301
fortification of staple foods in, 324
micronutrients in, 331
nutritional interventions in, 320–324, 321t, 328–329
nutrition transition in, 306f, 307–308, 307t, 310t
obesity in, 329
poverty and indigence in, 312, 312f
sanitation in, 329
Chilean Nutrition Foundation (CONIN), 323
China
growth of school-age children in, 279
obesity and overweight in, 369
Chlamydia trachomatis, and low birthweight, 100

C
Calcium
in complementary diet, 161t, 162f, 163t, 165t–168t, 172t–173t
direct role in linear growth of, 174–175
and intrauterine growth retardation, 101, 106t, 108
Calcium deficiency, and zinc deficiency,
195–196
Cameroon
effectiveness studies of complementary
feeding in, 383t, 386t, 390t
stunting, overweight, and obesity in, 355f, 356t, 364t
Carbohydrate, in complementary diet,
165t–168t, 172t–173t
Carbon monoxide, and intrauterine growth retardation, 101
Care-giving behaviors, and child growth, 313
Caretaker education, and childhood
malnutrition, 397
Cholesterol, birthweight and, 334, 348
Cigarette smoking
 and intrauterine growth retardation, 101
 in transitional societies, 317–319, 329
CIS (Composite Infant Scale), height and, 241–242
Cognition, linear growth retardation and cross-sectional associations between, 241–243
 longitudinal studies of, 243–246, 244f, 245t
 reversibility of effects of, 248–251, 254–256
Colombia
 efficacy study of dietary intake in, 379, 380t, 381
 linear growth retardation and stunting in, 129, 130, 131t, 356t
 overweight and obesity in, 356t, 360t, 361f, 364t
 processed complementary foods in, 290
Colombiabiharina, 290, 291
Communication strategies, in nutritional interventions, 383t–384t, 384–385
Comoros, stunting, overweight, and obesity in, 355f, 356t, 364t
Complementary feeding
 effectiveness studies of, 382–391, 383t–384t, 386t–387t, 389t–391t, 392–393
 efficacy studies of, 379–382, 380t, 391
 in Euro-Growth study, 58t, 59–60, 59f, 65
 and growth, 42–43, 51
 inadequacy of, 282–283
 linear growth failure during, 159–196
 multiple micronutrient supplements with, 181–183, 193–196
Complementary food
 fortificants in, 183–185, 193–196
 growth-limiting nutrients in
 adequacy of, 160–164, 161t, 162f, 163t, 165t–168t
 with direct role in linear growth, 169–177, 172t–173t
 discussion of, 192–196
 future research on, 185–186
 with indirect role in linear growth, 177–180
 household and recipe trials of, 385, 386t–387t
 micronutrient-rich, 183–185, 193–196
 processed, 281–303
 advantages of, 283–284
 communication strategy for, 285–286
 contamination of, 289
 development and marketing of, 300–301
 discussion of, 299–303
 effect on growth of, 284–285
 in Latin America, 290–296, 294t
 liquid, 289, 301
 in Mexican Progressa, 292–296, 294t
 and micronutrient needs, 286–287
 optimal characteristics of, 284, 287–288
 recommended research activities on, 297–298
 risks associated with use of, 289–290
 role of governments in, 288, 301, 302
 role of private industry in, 288–289
 sustainability of programs of, 289, 302
 timing of introduction of, 289, 299–300
 for very poor, 288–289
 quantity and quality of, 180–185
Composite Infant Scale (CIS), height and, 241–242
CONIN (Chilean Nutrition Foundation), 323
Constitutional smallness hypothesis, 229, 235–236
Copper
 in complementary diet, 162f, 165t–168t
 and intrauterine growth retardation, 106t
Coronary heart disease mortality, birthweight and, 334
Corticotropin-releasing hormone, and
 intrauterine growth retardation, 121
Costa Rica, stunting in, 89, 90f
Cote d’Ivoire, stunting, overweight, and obesity in, 355f, 356t, 364t
Coverage rates, in nutritional interventions, 385, 389t–390t
Cryptosporidiosis, and growth, 206–208
Curve fitting, for growth reference, 30, 33–34
Cytokines
 breast-feeding and, 51–52
 infection and, 211, 212

D
Demographic Health Surveys (DHSs), 94, 123–124
Developing countries
 growth failure in
 age patterns of, 129–141, 130f, 131t–132t, 134f–136f, 138f, 139f, 150–151
 during complementary feeding, 159–196
 discussion of, 150–152, 153–157
 geographical differences in, 124–129, 125f, 127f, 150
 levels and trends in, 85–90, 87t, 88t, 90f, 91–96
 intrauterine growth retardation in
 case study of, 141–150, 144t, 145f, 146t, 147f, 148f
prevalence and patterns of, 97–98
reliability of estimates of, 98
nutrition transition in. See Transitional societies
obesity in, 351–373
by age, 355, 355f
discussion of, 362–367, 368–373
gross national product and, 361, 362f, 363f
levels of, 355–357, 356t, 358f, 359f
methodology of studying, 353–354
social factors and, 361–362, 364t
surveys of, 352, 353
trends in, 357, 360t, 361f
Developmental levels, height and
cross-sectional studies of, 241–243
longitudinal studies of, 243–246, 244f, 245t
reversibility of effects of, 248–251, 254–256
Developmental quotient (DQ), linear growth retardation and, 242, 244, 244f
Deworming
and growth of school-age children, 271, 271t, 272, 272t
in infants, 220
DHSs (Demographic Health Surveys), 94, 123–124
Diabetes, birthweight and, 335
Diarrhea
and growth, 198–202, 199t–201t, 203t
and nutrition, 209, 210
prevention of, 220–221
and stunting, 94, 95–96
Dietary diversity, and obesity, 372
Dietary fiber, in complementary diet, 165t–168t, 172t–173t
Dietary intake. See also Nutrition
and energy sufficiency, 273–274, 273t
infection and, 209
Dietary patterns, in Latin America, 307–310, 309f, 310t, 319
Dominican Republic
effectiveness studies of complementary feeding in, 383t, 389t, 391t
linear growth retardation and stunting in, 129, 130, 131t, 356t, 364t
overweight and obesity in, 356t, 360t, 361f
weight-for-height and wasting in, 136f
DQ (developmental quotient), linear growth retardation and, 242, 244, 244f

E
East Asia, stunting, overweight, and obesity in, 356t, 359f, 363f, 364t
Eastern Europe, stunting, overweight, and obesity in, 356t, 364t
Eating disorders, obesity and, 397
"Eating down," 114
Economic growth, and stunting, 89, 92, 95
Education, maternal
and childhood malnutrition, 397
and overweight, 361–362, 364t, 369
in transitional societies, 329
Educational strategies, in nutritional interventions, 383t–384t, 384
Effectiveness studies, 382–391, 383t–384t, 386t–387t, 389t–391t, 392–393
Efficacy studies, 379–382, 380t, 391
Egypt
obesity in, 400
stunting, overweight, and obesity in, 356t, 360t, 364t
El Salvador, stunting, overweight, and obesity in, 356t, 360t, 361f, 364t
Empirical percentile approach, to curve fitting, 30
Energy availability
in Latin America, 308
and stunting, 89, 95
Energy balance, and obesity, 371
Energy expenditure, infection and, 210
Energy intake
in complementary diet, 163t, 165t–166t, 172t–173t
with protein-reduced formula, 78, 78t
Energy/protein supplementation, stunting at birth and response to, 148–150, 148f, 149f, 151–152, 153, 155
Energy sufficiency, in school-age children, 272–273
Enterogastric Escherichia coli
growth, 208
and nutrition, 210
Enteropathy, and stunting, 95–96
Environment, and intrauterine growth retardation, 101–102
Environmental pollution, in transitional societies, 317–319
Escherichia coli, enterogastric
growth, 208
and nutrition, 210
Ethnic differences
in age at peak height velocity, 19
geneic mapping of, 18
in growth reference, 24–25, 24t
in maximal growth, 20
in stature, 1–20
classification of populations for, 2–3, 3t
discussion of, 15–20
Ethnic differences, in stature (contd.)
prepubertal, 4–7, 5f–7f
pubertal, 7–10, 8f–10f
in weight/height ratio, 19
Euro-Growth references, 61–62
Euro-Growth study, 54–62
breast-feeding in, 55–58, 56f, 57t
duration of, 58–60, 58t, 59f, 59t
design of, 54–55, 55t
discussion of, 63–66
introduction of solids in, 58t, 59–60, 59f, 65
length differences in, 55–57, 56f, 57t
midparental height in, 58–59, 58t, 59t
obesity in, 60–61, 61t
objectives of, 54
parents’ influence on, 65–66
weight and length differences in, 55–58, 56f, 57t
EURONUT, 54
European-origin populations
ethnic grouping of, 15–16
prepubertal growth in, 4, 5f, 6, 6f, 16
pubertal growth in, 8–10, 8f–10f
Evidence, types of, 375–378, 377t
Exposure rates, in nutritional interventions, 385, 389t–390t

F
Factorial method, for calculating protein requirements, 75
Fat, in complementary diet, 165t–168t, 172t–173t
Fat consumption
in programming hypothesis, 350
in transitional societies, 319
Fat energy
in Latin America, 308, 309f
and obesity, 372–373
Fat patterning, birthweight and, 335
Female literacy, and stunting, 89, 95
Femur length, 157
Ferrous sulfate, and growth of school-age children, 271t
Fetal responses, to undernutrition and stress, 338t
Fiber
in complementary diet, 165t–168t, 172t–173t
and obesity, 372
Fibrinogen, birthweight and, 334
Fingerprints, 339
Folate, and intrauterine growth retardation, 106, 106t, 107f
Folic acid supplementation, for pregnant women, 301, 302
Food, health, and care trilogy, 399
Food security
and child growth, 311–312, 312f
in Latin America, 308, 310f
and obesity, 372
Food supplements. See also Nutritional interventions
in Chile, 320–324, 321t
for intrauterine growth retardation, 104, 110–111, 119
Formula, protein content of
vs. breast milk, 73–74
recommendations for, 75–76
reduced, 76–80, 77t–80t, 81–83
Formula-feeding, in growth reference, 25
Fortificants
during complementary feeding, 183–185, 193–196
of staple foods, 324
Fresco, 145, 148–149, 149f, 155

G
Gambia
effectiveness studies of complementary feeding in, 386t
stunting at birth in, 141–150, 144t, 145f, 146t, 147f, 148f
Gastrointestinal infection
asymptomatic, and growth, 206–208, 218–219, 221
and nutrition, 210
Gender differences
in birthweight, 102
in child growth, 313–314
in overweight, 362, 364t
Genetic factors, in intrauterine growth retardation, 102–103
Genetic mapping, of ethnic differences, 18
Genetic risk factors, for obesity, 70–71
Geographical distribution
of growth failure, 124–129, 125f, 127f, 150
of malnutrition, 396
Gestational age, small for
and intrauterine growth retardation, 97
and perinatal mortality, 231–234, 233t, 236–238, 240
Ghana
effectiveness studies of complementary feeding in, 386t
stunting, overweight, and obesity in, 355f, 356t, 364t
Goiter
diagnosis of, 397–398
iodinated salt and, 324
Gross national product (GNP), and stunting, 89,
92, 95
relation of overweight with, 361, 362f, 363f
Growth factors, in breast milk, 44, 51
Growth failure, in developing countries
age patterns of, 129–141, 130f, 131t–132t,
134f–136f, 138f, 139f, 150–151
case study of, 141–150, 144t, 145f, 146t,
147f, 148f
discussion of, 150–152, 153–157
geographical differences in, 124–129, 125f,
127f, 150
levels and trends in, 85–90, 87t, 88t, 90f,
91–96
Growth faltering. See Growth failure
Growth-limiting nutrients, in complementary
feeding
adequacy of, 160–164, 161t, 162f, 163t,
165t–168t
with direct role in linear growth, 169–177,
172t–173t
discussion of, 192–196
future research on, 185–186
with indirect role in linear growth, 177–180
Growth reference(s), 21–36
body mass index for age in, 29, 34
breast-feeding and, 25, 37–41, 38f–40f, 40t,
45, 46–47, 49–50, 52
on computer, 64
conditional centiles in, 63–64
curve fitting in, 30, 33–34
data sources for, 23–24
development of, 21–22
discussion of, 33–36
disjunctions between length and stature in,
30–31
disjunctions from child to adult in, 33
Euro-, 61–62
International, 10–11, 47
for low-birthweight infants, 25–27, 26f, 34
of NCHS, 21, 22, 53–54, 57t
obesity in, 27–29, 28f, 36, 65
race and ethnicity in, 24–25, 24t
socioeconomic status in, 24, 24t, 35
vs. standards, 22–23, 35, 66
use of, 22
variability of extreme centiles on, 33–34
for vegetarians, 36
of WHO, 21, 23, 53–54, 57–58, 64, 66

Growth retardation. See Intrauterine growth
retardation (IUGR); Linear growth retardation
Growth spurt, pubertal, 259
Guatemala
efficacy study of dietary intake in, 380t, 381
intrauterine growth retardation in, 141–150,
144t, 145f, 147t, 148f, 149f, 151
overweight and obesity in, 356t, 360t, 361f,
364t
processed complementary food in, 285, 290
stunting in
age trends in, 129, 130f
with no late catchup growth in, 264–269,
265f–269f, 278
percentage of, 156, 356t
in urban vs. rural areas, 125, 125f, 126,
130f, 131t, 133
weight-for-height and wasting in, 136f, 137,
144t

H
Haiti, stunting, overweight, and obesity in, 356t,
364t
HDI (human development index), 306–307,
306t, 307t, 308, 310t
Health Examination Surveys (HESs), 23
Heavy metals, in transitional societies, 317
Height
adult, childhood and pubertal growth and, 270
and cognition
cross-sectional associations between,
241–243
longitudinal studies of, 243–246, 244f, 245t
reversibility of effects of, 248–251,
254–256
ethnic differences in, 1–20
classification of populations for, 2–3, 3t
discussion of, 15–20
prepubertal, 4–7, 5f–7f
pubertal, 7–10, 8f–10f
geographical differences in, 129–136, 130f,
131t–132t, 134f, 135f, 137–141, 150
vs. length, 30–31
vs. linear growth velocity, 278–279, 280
maternal
and intrauterine growth retardation, 103
and stunting, 89, 156–157
midparental, 18
in Euro-Growth study, 58–59, 58t, 59t
SUBJECT INDEX

Height (cond.)
and school achievement, 246
of school-age children, 257–280
and adult height, 270
between-population differences in, 260–269
and catchup growth, 261–269, 261f, 263f–269f
conceptual framework for studying, 257–258, 258f
environmental vs “imprinting” or genetic factors affecting, 270–274, 271t, 272f, 273t
normal variations in, 259–260, 260f, 276
Helicobacter pylori, and growth, 217
Helminthiasis
deworming for, 220
and growth, 206, 207t
and nutrition, 209
Herbicides, and intrauterine growth retardation, 102
HESs (Health Examination Surveys), 23
Heterogeneity, of populations, 17–18
Hexosaminidase activity, reduction of, 119
Histidine, in formula, 77, 77t
HIV. See Human immunodeficiency virus (HIV)
Homogeneity, of populations, 17–18
Honduras
overweight and obesity in, 356t, 360t, 361t, 364t
stunting in, 89, 90, 90f, 94, 356t
Hong Kong Chinese, increase in stature of, 19
Hookworm, and iron deficiency anemia, 210
Hormones, in human milk, 44
Household food security
and child growth, 311–312, 312f
in Latin America, 308, 310t
Household trials, of new complementary foods, 385, 386t–387t
Human development index (HDI), 306–307, 306t, 307t, 308, 310t
Human immunodeficiency virus (HIV)
and birthweight, 100
and growth, 204–206, 205t, 217–218
and nutrition, 210
and stunting, 93–94
in Sub-Saharan Africa, 397, 400
Hypertension, and intrauterine growth retardation, 100–101
I
IL-6 (interleukin-6), infection and, 211, 212
Immunoglobulin A (IgA), secretory, in human milk, 74
INCAP (Institute of Nutrition of Central America and Panama), 285
Incaparina, 285, 290, 291
Income level, and access to food, 312
India
low birthweight and infant mortality in, 229
overweight and obesity in, 356t, 364t, 369
prenatal nutritional interventions in, 113
stunting in, 356t
and late catchup growth, 263–264, 264f, 269f, 279–280
Indicators, 397–398
Indo-Mediterranean populations
prepubertal growth in, 4, 5f
pubertal growth in, 8–9, 8f, 9f
Indonesia
effectiveness studies of complementary feeding in, 383t, 387t, 390t, 391t
efficacy study of dietary intake in, 380t, 381
growth of school-age children in, 271t
Infant mortality
causes of, 225f, 226
intrauterine growth and development and, 223–240
in Latin America, 306, 306t, 307
weight for age and, 226–229, 227f, 228f
Infection
asymptomatic intestinal, 206–208, 218–219, 221
and bone modeling, 212
breast-feeding during, 209
diarrheal, 198–202, 199r–201t, 233t
and growth, 51, 157, 198–209, 217–221
with helminthiasis, 206, 207t
with human immunodeficiency virus, 204–206, 205t
and intrauterine growth retardation, 99–100
with malaria, 202–204
with measles, 204
and nutrition, 209–212, 219–220
respiratory, 199r–201t, 202, 203t
zinc and, 194
Inflammation, and bone modeling, 212
Institute of Nutrition of Central America and Panama (INCAP), 285
Insulin-like growth factor, infection and, 210
Insulin resistance syndrome, early growth retardation and, 333–350
and stunting, 85, 146–147, 147t
and syndrome X, 333–350
term, 98
timing of, 98–99, 337
uterine circulation and, 119
vitamins and, 106–108, 106t, 107f
vitamin supplements and, 111–112
zinc and, 106t, 109–110, 109f, 120, 121
Iodination, of salt, 324
Iodine
in complementary diet, 161t
direct role in linear growth of, 175–176
and intrauterine growth retardation, 106t, 108–109
Iodine insufficiency, diagnosis of, 397–398
IQ (intelligence quotient), linear growth retardation and, 242–243, 244, 244f, 245, 248–249
Iron
bioavailability of, 287–288
and cognition, 256
in complementary diet, 161t, 162f, 163t, 165t–168t, 287
indirect role in linear growth of, 177–178
and intrauterine growth retardation, 106t, 108
Iron absorption, with reduced-protein formula, 83
Iron deficiency anemia, infection and, 210, 211
Iron fortification, of staple foods, 324
Iron supplements, during complementary feeding, 182
IUGR. See Intrauterine growth retardation (IUGR)

J
Jamaica
efficacy study of dietary intake in, 380t, 381
stunting in, 277
Japan, stunting in, 276–277
Juice, as complementary food, 289, 301
JUNJII (National Nursery Schools Council), 322–323

K
Kazakhstan, stunting, overweight, and obesity in, 356t, 364t
Kenya
growth of school-age children in, 271, 271t, 272f, 273–274, 273t
overweight and obesity in, 355f, 356t, 364t
stunting in, 125f, 126, 356t
L

Labdamin, 300

Lactating women, supplement for, 294, 294t
Lactoferrin, in human milk, 74, 81
Lactose intolerance, skim milk and, 300–301

Latin America

nutritional interventions in, 320
nutrition transition in, 306–310, 306t, 307t, 309f, 310t
overweight and obesity in
by gross national product, 362f
lifestyle and, 366
percentage of, 356t, 357, 359f, 360t, 361f
social factors and, 364t
stunting and, 363f
processed complementary foods in, 290–296, 294t, 303
stunting in
age trends in, 129–133, 130f, 134t
percentage of, 356t, 357
in urban vs. rural areas, 124–125, 125f, 126, 130f, 131t, 133, 134t
wasting and, 128
wasting in, 126, 127f, 128, 136f, 137
weight for age and infant mortality in, 227f

Latin American populations

prepubertal growth in, 4, 5f
pubertal growth in, 8–9, 8f, 9f
Length, vs. stature, 30–31

Length gain

with breast-feeding vs. reduced-protein
formula, 79, 79t, 81
diarrhea and, 200t, 202, 203t
helminthiasis and, 206, 207t
human immunodeficiency virus and,
204–206, 205t
malaria and, 202–204
respiratory infections and, 200t, 202, 203t
Life expectancy, in Latin America, 306, 306t
Lifestyle changes, in transitional societies, 319
Lifestyle factors, in obesity, 70

Linear growth. See Height

Linear growth retardation

and behavior, 247–248
and catchup growth
lack of, 264–265, 265f–269f
late, 262–264, 263f, 264f
prepubertal, 261–262, 261f
and cognition
cross-sectional associations between,
241–243
longitudinal studies of, 243–246, 244f,
245t
reversibility of effects of, 248–251,
254–256
during complementary feeding, 159–196
adequacy of growth-limiting nutrients and,
160–164, 161t, 162f, 163t, 165t–168t
discussion of, 192–196
future research on, 185–186
growth-limiting nutrients with direct role
in, 169–177
growth-limiting nutrients with indirect role
in, 177–180
micronutrient-rich foods or fortificants for,
183–185, 193–196
multiple micronutrient supplements for,
181–183, 193–196
quantity and quality of food in, 180–185
in developing countries
age trends in, 129–136, 130f, 131t–132t,
134f–136f, 155–156
case study of, 141–150, 144t, 145f, 146t,
147f, 148f
discussion of, 150–152, 153–157
geographical differences in, 124–129, 125f,
127f
levels and trends in, 85–90, 87t, 88t, 90f,
91–96
programming research on, 340
psychosocial consequences of, 241–256
cross-sectional studies of, 241–243
longitudinal studies of, 243–246, 244f,
245t
reversibility of effects of, 248–251,
254–256
and school achievement, 246
slow process of, 274
and syndrome X, 333–350

Linear growth velocity, variations in, 257–280
conceptual framework for studying, 257–258,
258f
vs. height, 278–279, 280
normal, 259–260, 260f, 276, 277–278
between populations, 260–269
saltatory model for, 277
Lipid profiles, birthweight and, 334, 348
Lipoproteins, birthweight and, 334

Literacy rate
female, and stunting, 89, 95
in Latin America, 306, 306t
in Sub-Saharan Africa, 313
LMS method, of curve fitting, 30, 33, 34
Low birthweight. See Birthweight, low
Lysozyme, in human milk, 74
M
Madagascar
 overweight and obesity in, 355f, 356t, 360t, 364t
 stunting in, 125, 125f, 126, 134f, 356t
Magnesium
 in complementary diet, 162f
 and intrauterine growth retardation, 106t
Malaria
 and growth, 202–204
 and intrauterine growth retardation, 99–100
Malawi
 overweight in, 355f, 356t, 364t, 369
 stunting in, 125–126, 125f, 356t
 wasting in, 138f
Mali
 effectiveness studies of complementary feeding in, 383t, 390t, 391t
 overweight and obesity in, 355f, 356t, 360t, 364t
 stunting in, 356t
 wasting in, 126, 127, 127f, 137, 138f
Malnutrition. See also Nutrition
caretaker education and, 397
 geographical distribution of, 396
 and obesity, 397
Manganese, and intrauterine growth retardation, 106t
MAS (Multicenter Allergy Study), 63
Maternal age, and birthweight, 240
Maternal body mass index
 and intrauterine growth retardation, 103–104
 as predictor of obesity, 63
Maternal education
 and childhood malnutrition, 397
 and overweight, 361–362, 364t, 369
in transitional societies, 329
Maternal height
 and intrauterine growth retardation, 103, 239
 and stunting, 89, 156–157
Maternal knowledge and practice, in nutritional interventions, 388, 389t–390t
Maternal weight, and intrauterine growth retardation, 103–104
Maternal workload, and intrauterine growth retardation, 119
Maturation, assessment of, 278
Maximal growth, ethnic differences in, 20
Meal patterns, and obesity, 372
Measles
 and growth, 204
 and nutrition, 210
Mebendazole, and growth of school-age children, 271t
Metabolic imprinting, of obesity, 67–72
Metabolic rate, and obesity, 400
Metabolic syndrome, early growth retardation and, 333–350
Mexican-American population, pubertal growth in, 17
Mexico
 micronutrient supplementation in, 286
 overweight and obesity in, 356t, 364t, 398–399
 prenatal nutritional interventions in, 113, 120
 processed complementary foods in, 291–296, 294t, 302–303
 stunting in, 92, 356t
Micronutrient(s)
 bioavailability of, 287–288, 301–302
 and cognition, 256
 during infection, 209
 and intrauterine growth retardation, 106–110, 106t, 107f, 109f
 in processed complementary foods, 286–287
Micronutrient-rich foods, during complementary feeding, 183–185, 193–196
Micronutrient supplements
 during complementary feeding, 181–183, 193–196
 and growth of school-age children, 271t, 272, 272t
 for intrauterine growth retardation, 111–112, 120–121
Middle East. stunting, overweight, and obesity in, 356t, 359f, 362f, 363f, 364t
Midparental height, 18
 in Euro-Growth study, 58–59, 58t, 59t
Minerals, and intrauterine growth retardation, 106t, 108–110, 109f
Mineral supplements
 during complementary feeding, 181–183, 193–196
 for intrauterine growth retardation, 111–112, 120–121
Morocco, stunting, overweight, and obesity in, 356t, 364t
Mortality
 child, weight for age and, 229–231, 230f
 infant. See Infant mortality
 neonatal, low birthweight and, 231, 232f
 perinatal, birthweight for gestational age and, 231–234, 233t, 236–238, 240
Mozambique, stunting, overweight, and obesity in, 355f, 356t
Multicenter Allergy Study (MAS), 63
Multilevel modeling, of growth failure in developing countries, 86
Multiple micronutrient supplements
during complementary feeding, 181–183, 193–196
for intrauterine growth retardation, 111–112, 120–121
Multivitamins, for intrauterine growth retardation, 111–112, 120–121

N
Namibia, stunting, overweight, and obesity in, 355f, 356t, 364t
National Center for Health Statistics (NCHS), growth reference of, 21, 22, 53–54, 57t
National Complementary Feeding Program (PNAC), 320–322
National Health and Nutrition Examination Survey (NHANES), 22, 23–24
standards of, 272, 272t
National Nursery Schools Council (JUNIIJ), 322–323
Neonatal mortality, low birthweight and, 231, 232f
Nepal
overweight and obesity in, 356t, 364t
stunting in, 125f, 126, 132t, 135, 135f, 356t
with no late catchup growth in, 265, 266f
wasting in, 137, 139f
New Guinea, prepubertal stunting and late catchup growth in, 263, 264f, 269f
NHANES (National Health and Nutrition Examination Survey), 22, 23–24
standards of, 272, 272t
Niacin, in complementary diet, 162f
Nicaragua
linear growth retardation and stunting in, 129, 131t, 356t
overweight and obesity in, 356t, 360t, 361f, 364t
Nicotine, See Cigarette smoking
Niger
effectiveness studies of complementary feeding in, 387t
overweight and obesity in, 355f, 356t, 360t, 364t
stunting in, 356t
wasting in, 126–127, 127f, 137, 138f
Nigeria
effectiveness studies of complementary feeding in, 383t, 386t, 389t
stunting, overweight, and obesity in, 355f, 356t, 364t
Nitrogen content, of human milk, 73–74
Nonprotein nitrogen (NPN) fraction, in human milk, 74
Nucleotides, in formula, 82
Nutrition
infection and, 209–212, 219–220
and intrauterine growth retardation, 103–114
interventions for, 110–114
macronutrients in, 105–106
micronutrients in, 106–110, 106t, 107f, 109f
minerals in, 106t, 108–110, 109f, 111–112
preconceptional, 103–105
during pregnancy, 105–114
vitamins in, 106–108, 106t, 107f, 111–112
Nutritional interventions
and cognition, 249–251, 254
communication strategies in, 383t–384t, 384–385
coordination between providers of, 399
coverage and exposure rates in, 385, 389t–390t
educational strategies in, 383t–384t, 384
effectiveness studies of, 382–391, 383t–384t, 386t–387t, 390t–391t, 392–393
efficacy studies of, 379–382, 383t, 391
for intrauterine growth retardation, 104–105, 110–114, 119–121
maternal knowledge and practice in, 388, 389t–390t
stunting at birth and response to, 148–150, 148f, 149t, 151–152, 153, 155
in transitional societies, 319–324, 321t
Nutrition transition, See Transitional societies

O
Obesity
abdominal, 369
as behavioral issue, 372, 397
birthweight and, 335, 342
body mass index and, 71, 369, 370–371
at 1 month, 60–61, 61t
maternal, 63
breast-feeding and, 43, 44, 45–46, 47, 64–65, 67–72, 365
breast milk and, 71–72
consequences of early, 67
defined, 354
in developing countries, 351–373
by age, 355, 355f
discussion of, 362–367, 368–373
gross national product and, 361, 362f, 363f
levels of, 355–357, 356t, 358f, 359f
methodology of studying, 353–354
social factors and, 361–362, 364t
surveys of, 352, 353
trends in, 357, 360t, 361f
dietary diversity and, 372
ey early predictors of, 60–61, 61t
and eating disorders, 397
energy balance and, 371
fat energy and, 372–373
fiber and, 372
food security and, 372
genetic risk factors for, 70–71
in growth reference, 27–29, 28f, 36, 65
health risks of, 351, 352
interventions for, 371, 398–399
lifestyle factors and, 70
malnutrition and, 397
maternal, and stunting, 368–369
meal patterns and, 372
measurement of, 365
metabolic imprinting of, 67–72
metabolic rate and, 400
persistence into adulthood of, 67, 351
physical activity and, 371–372
social class and, 70, 330
stunting and, 370
in transitional societies, 319, 329
weight for height and, 365, 369
Obesity rebound, 64–65
opportunist infection, and stunting, 94
Optimal growth, 35–36
breast-feeding and, 47
Orphans, in Sub-Saharan Africa, 396–397
Overweight, in developing countries, 351–373
by age, 355, 355f
discussion of, 362–367, 368–373
gross national product and, 361, 362f, 363f
levels of, 355–357, 356t, 358f, 359f
methodology of studying, 353–354
social factors and, 361–362, 364t
surveys of, 352, 353
trends in, 357, 360t, 361f

P
PAE (School Feeding Program), 322
Pakistan
low birthweight and infant mortality in, 229
overweight and obesity in, 356t, 364t
stunting in, 132t, 135, 135f, 356t
wasting in, 139f
Papilla, 294, 294t, 299
Paraguay, stunting, overweight, and obesity in, 356t, 364t
Parity, and birthweight, 102
Peabody Picture Vocabulary Test, height and, 243
Peak height velocity, ethnic differences in, 8–9, 8f–10f, 19
Pentainositol phosphate content, reduction of, 193–196
Perinatal mortality, birthweight for gestational age and, 231–234, 233t, 236–238, 240
Peru
effectiveness studies of complementary feeding in, 383t, 386t, 389t, 391, 391t
linear growth retardation and stunting in, 129, 130f, 131t, 356t
overweight and obesity in, 356t, 360t, 361f, 364t
processed complementary foods in, 290–291
weight-for-height and wasting in, 136f, 137
Philippines
effectiveness studies of complementary feeding in, 387t
stunting in vs. birthweight, 340, 347–348, 350
pubertal, 265, 266f
Phosphorus
in complementary diet, 161t, 162f, 165t–168t
direct role in linear growth of, 174–175
Physical activity, and obesity, 371–372
Phytate, reduction of, 184
Phytic acid, in complementary diet, 165t–168t, 172t–173t
Phytoestrogens, and onset of puberty, 16
PHI (pregnancy-induced hypertension), and intrauterine growth retardation, 100–101
Placental size, 339
Plausibility design, 376–378, 377t
PNAC (National Complementary Feeding Program), 320–322
Pollution, in transitional societies, 317–319
Ponderal index, 98–99, 339
Postnatal factors, in programming hypothesis, 340–343
Preconceptional nutritional status, and intrauterine growth retardation, 103–104
Pre-eclampsia, and intrauterine growth retardation, 100–101
Pregnancy, supplementation during, 294, 294t
folic acid, 301, 302
Pregnancy-induced hypertension (PIH), and intrauterine growth retardation, 100–101
Prepregnancy weight, and intrauterine growth retardation, 103–104
Prepubertal growth
 catchup, 261–262, 261f, 347
 ethnic differences in, 4–7, 5f–7f
 international growth references for, 10
Probabilistic design, 376–378, 377t
Processed complementary food. See Complementary food, processed
Programming hypothesis, 333–350
 birthweight in, 336–337
 critiques of research on, 335–340, 338t
 discussion of, 347–350
 epidemiologic studies of, 335–336
 future research on, 344
 intrauterine growth retardation in, 336–337
 overview of human studies of, 334–335
 pathways for causality in, 337–340, 338t
 policy implications of, 343–344, 348–349
 postnatal factors in, 340–343
 study design for, 347, 349
 in transitional societies, 348
Progresa, 291–296
 benefits for families in, 292–293
 conditions for inclusion in, 292
 discussion of, 291–299
 evaluation of, 295–296
 goal of, 292
 historical background of, 291–292
 nutrition component of, 294–295, 294t
 program design of, 292–293
Protein content, of formula
 vs. breast milk, 73–74
 recommendations for, 75–76, 82–83
 reduced, 76–80, 77t–80t, 81–83
Protein intake
 from breast feeding, 44, 50, 72, 74–75, 75t, 81
 from complementary diet, 161t, 162f, 163t, 165t–168t, 172t–173t
 direct role in linear growth of, 169–170
 from reduced-protein formula, 78, 78t, 82
Protein losses, due to infection, 210
Protein requirements, during first 6 months, 74–75, 75t
Protein restriction, maternal, animal models of, 338–339
Psychosocial consequences, of linear growth retardation, 241–256
 cross-sectional studies of, 241–243
 longitudinal studies of, 243–246, 244f, 245t
 reversibility of effects of, 248–251, 254–256
Pubertal catchup growth, 262–264, 263f, 264f
 prepubertal stunting with, 263–264, 264f
 prepubertal stunting without, 264–269, 265f–269f
Pubertal growth
 and adult height, 270
 catchup, 261–269, 261f, 263f–269f
 ethnic differences in, 7–10, 8f–10f
 international growth references for, 10–11
 variations in
 normal, 259–260, 276
 between populations, 260–269
Pubertal growth spurt, 259
Puberty, soya consumption and, 16
Public expenditures, in Latin America, 307–308, 307t
Pyrantel, and growth of school-age children, 271t

R
Racial differences. See Ethnic differences
Raven Matrices, height and, 243
Recipe trials, of new complementary foods, 385, 386t–387t
Research, on breast-feeding and growth, 45–47
Respiratory infections
 and growth, 199t–201t, 202, 203t
 and nutrition, 209–210
Retinol, infection and, 210–211
Riboflavin
 in complementary diet, 161t, 162f, 163t
 indirect role in linear growth of, 179
Rohrer’s ponderal index, 98–99
Rural areas
 overweight in, 361, 364t
 stunting in, 125–126, 125f, 140–141
Rwanda, stunting, overweight, and obesity in, 355f, 356t, 364t

S
Salt, iodination of, 324
Salthatory growth, in school-age children, 277
Sanitation, in transitional societies, 329
School achievement, linear growth retardation and, 246
School-age children. See also Child growth
 catchup growth in
 late, 262–264, 263f, 264f
 prepubertal, 261–262, 261f
 functional consequences of slow growth in, 274
 prepubertal stunting in
 with late catchup growth, 263–264, 264f
 with no late catchup growth, 264–269, 265f–269f
 salthatory growth in, 277
 variations in growth of, 257–283
and adult height, 270
conceptual framework for studying, 257–258, 258f
environmental vs. “imprinting” or genetic factors in, 270–274, 271f, 272f, 273t
normal, 259–260, 260f, 276
between populations, 260–269
School Feeding Program (PAE), 322
School feeding programs, 277
Secretory IgA, in human milk, 74
Selenium, and intrauterine growth retardation, 106t
Senegal
effectiveness studies of complementary feeding in, 387t
overweight and obesity in, 355f, 356t, 364t
stunting in, 134f, 356t
Serum albumin, with breast-feeding vs. reduced-protein formula, 79–80, 80t
Serum urea, with breast-feeding vs. reduced-protein formula, 79, 80t
Shigella, and nutrition, 210
Skim milk, and lactose intolerance, 300–301
Small for gestational age (SGA)
and intrauterine growth retardation, 97
and perinatal mortality, 231–234, 233t, 236–238, 240
Smoking
and intrauterine growth retardation, 101
in transitional societies, 317–319, 329
Sociability, height and, 247
Social factors, in overweight, 361–362, 364t
Sociodemographic factors, in intrauterine growth retardation, 102
Socioeconomic status
and access to food, 312
and birthweight, 102
and breast-feeding, 49–50, 52
and growth of school-age children, 279–280
in growth reference, 24, 24t, 35
and obesity, 70, 330
Solid(s), introduction of, in Euro-Growth study, 58t, 59–60, 59f, 65
Solidarina, 290, 291
South America. See also Latin America
stunting in, 87, 87t, 88, 88t
weight for age and infant mortality in, 227f
South Asia
stunting, overweight, and obesity in, 356t, 357, 359f, 363f, 364t
weight for age and infant mortality in, 226–229, 227f
South Asian paradox, 313–314
Southeast Asia, weight for age and infant mortality in, 226–229, 227f
Soya consumption, and onset of puberty, 16
Special transitional foods, 282
Sri Lanka
low birthweight and infant mortality in, 229
stunting, overweight, and obesity in, 356t, 364t
Staple foods, fortification of, 324
Stature. See Height
Stress, stunting and, 247–248
Stress hormones, and intrauterine growth retardation, 121
Stunting
and behavior, 247–248
at birth
 case study of, 141–150, 144t, 151
 postnatal growth with, 143–146, 145f
 and response to energy/protein supplementation, 148–150, 148f, 149f, 151–152, 153, 155
 and risk of later stunting, 146–147, 147t, 154–155
 and catchup growth
 late, 262–269, 263f–269f
 prepubertal, 261–262, 261f
 and cognition
 cross-sectional studies of, 241–243
 longitudinal studies of, 243–246, 244f, 245t
 reversibility of effects of, 248–251, 254–256
 definitions of, 153, 354
 in developing countries
 geographcal distribution of, 124–126, 125f, 127–129, 150
 gross national product and, 361, 362f, 363f
 levels and trends in, 85–90, 87t, 88t, 90f, 91–96, 355–357, 356t
 human immunodeficiency virus and, 204–206, 205f
 as indicator, 397–398
 intergenerational effects on, 156–157
 with late catchup growth, 263–264, 264f
 without late catchup growth, 264–269, 265f–269f
 maternal obesity and, 368–369
 and obesity, 370
 prevalence of, 104
 programming research on, 340
 psychosocial consequences of
 cross-sectional studies of, 241–243
 longitudinal studies of, 243–246, 244f, 245t
 reversibility of effects of, 248–251, 254–256
Stunting (contd.)
and school achievement, 246
and wasting, 127–129, 150
Sub-Saharan Africa
adult literacy rate in, 313
AIDS in, 397, 400
malnutrition in, 396, 400
orphans in, 396–397
stunting, overweight, and obesity in, 355, 355f, 356t, 357, 359f, 360t, 362f, 363f, 364t
Suplemento alimenticio, 294, 294t
Supplementary feeding. See also Nutritional interventions
in Chile, 320–324, 321t
for intrauterine growth retardation, 104, 110–111, 119
Swaziland, effectiveness studies of complementary feeding in, 386t
Syndrome X, early growth retardation and, 333–350
Syphilis, and low birthweight, 100

T
Tamil Nadu Integrated Nutrition Project, 113
Tanner staging, 278
Tanzania
effectiveness studies of complementary feeding in, 386t
growth of school-age children in, 271–272, 271t
low birthweight and neonatal mortality in, 231, 232f
overweight and obesity in, 355f, 356t, 360t, 364t
stunting in, 125–126, 125f, 356t
Taurine, in formula, 82
Thailand
low birthweight and neonatal mortality in, 231, 232f
stunting, overweight, and obesity in, 356t, 364t
Thiamine, in complementary diet, 162f
Tobacco. See Smoking
Tobago, stunting, overweight, and obesity in, 356t, 364t
Togo, overweight and obesity in, 355f, 360t, 364t
Transitional foods, special, 282
Transitional societies, 305–331, 352
adult literacy rate in, 306, 306t
breast-feeding in, 215–317, 315t, 316t, 330
care of women and children in, 313
child growth in, 310–317, 311f
dietary patterns in, 307–310, 305f, 310t, 319
discussion of, 328–331
environmental pollution in, 317–319
food security in, 308, 310t, 311–312, 312f
fortification of traditional foods in, 324
gender issues in, 313–314
human development index in, 306–307, 306t, 307t, 308, 310t
infant mortality rate in, 306, 306t, 307
in Latin America, 306–310, 306t, 307t, 309f, 310t
lessons learned from, 325
life expectancy in, 306, 306t
lifestyle changes in, 319
nutrition intervention programs in, 319–324, 321t
obesity in, 329, 366
policies directed at improving child growth in, 325–326
programming hypothesis in, 348
public expenditures in, 307–308, 307t
women’s work in, 314
Transthyretin, infection and, 211
Triglycerides, birthweight and, 334
Trinidad, stunting, overweight, and obesity in, 356t, 364t
Tryptophan, in formula, 77, 77t, 83
Tumor necrosis factor-α, infection and, 212
Tunisia, stunting, overweight, and obesity in, 356t, 364t
Turkey, stunting, overweight, and obesity in, 356t, 364t

U
Uganda
overweight and obesity in, 355f, 356t, 360t, 364t
stunting in, 125f, 126, 134f, 356t
Undernutrition. See also Nutrition and growth failure, 85, 92
Underweight, in developing countries, 91
Urban areas
overweight in, 361, 364t
stunting in, 125–126, 125f, 140–141
Urea, serum, with breast-feeding vs. reduced-protein formula, 79, 80t
Urea nitrogen, in human milk, 74
Urinary losses, of nutrients during infection, 210–211
Urinary tract infections, and low birthweight, 100
Uterine circulation, and intrauterine growth retardation, 119
Uzbekistan, stunting, overweight, and obesity in, 356t, 364t

V
Vegetarians, growth reference for, 36
Vitamin(s), and intrauterine growth retardation, 106–108, 106t, 107f
Vitamin A
in complementary diet, 161t, 162f, 163t
infection and, 210
and intrauterine growth retardation, 106t, 107
role in linear growth of
direct, 176–177
indirect, 179–180
Vitamin B1, in complementary diet, 165t–168t
Vitamin B2, in complementary diet, 165t–168t
Vitamin C, in complementary diet, 162f
Vitamin D, in complementary diet, 161t
Vitamin supplements
during complementary feeding, 181–183, 193–196
for intrauterine growth retardation, 111–112, 120–121

W
Warfare, and stunting, 92
Wasting
age trends in, 131t–132t, 136f, 137–141, 138f, 139f, 150–151
geographical distribution of, 126–129, 127f, 150
human immunodeficiency virus and, 204, 205t
and stunting, 127–129, 150
Weight
for age
and child mortality, 229–231, 230f
and infant mortality, 226–229, 227f, 228f
birth-. See Birthweight
for height
age trends in, 131t–132t, 136f, 137–141, 138f, 139f, 150–151
and energy sufficiency, 273
and obesity, 365, 369
maternal, and intrauterine growth retardation, 103–104
prepregnancy, and intrauterine growth retardation, 103–104
Weight gain
with breast-feeding vs. reduced-protein formula, 78t, 79, 81
diarrhea and, 198–202, 199t, 201t
helminthiasis and, 206, 207t
human immunodeficiency virus and, 204, 205t
malaria and, 202–204
measles and, 204
respiratory infections and, 199t, 201t, 202
Weight/height ratio, ethnic differences in, 19
Weight increments, in school-age children, 272–273
Weschler Intelligence Scales for Children (WISC), height and, 242, 244, 245t
Whey/casein ratio
in human milk, 74
in reduced protein formula, 74, 76
Wide-Range Achievement Test (WRAT), height for age and, 246
Women, Infants, and Children (WIC) program, and intrauterine growth retardation, 113
Women’s education, in transitional societies, 329
Women’s work, and child growth, 314
Workload, maternal, and intrauterine growth retardation, 119
World Health Organization (WHO)
breast-feeding recommendations of, 53
growth reference of, 21, 23, 53–54, 57–58, 64, 66
WRAT (Wide-Range Achievement Test), height for age and, 246

Y
Yemen, stunting, overweight, and obesity in, 356t, 364t

Z
Zambia
overweight and obesity in, 355f, 356t, 360t, 364t
stunting in, 356t
Zanzibar, growth of school-age children in, 266–268, 267f–269f, 271, 271t, 273
Zimbabwe
growth of school-age children in, 271t, 272
stunting, overweight, and obesity in, 355f, 356t, 364t
Zinc
bioavailability of, 287–288
and cognition, 256
Zinc (contd.)
in complementary diet, 161t, 162f, 163t, 165t–168t, 172t–173t, 192–193, 287 and intrauterine growth retardation, 106t, 109–110, 109f, 120, 121 role in linear growth of direct, 170–174 indirect, 178–179

Zinc deficiency
calcium deficiency and, 195–196 identification of, 195
Zinc supplements
during complementary feeding, 182, 286 and growth of school-age children, 271t and infection, 194 Zinc wastage, during infection, 210, 211