Subject Index

Acute-phase response, cytokine mediation in cachexia	157, 158
β2-Adrenergic agonist, effects on rat tumor models	264
Alcohol	
breast cancer studies	107, 108, 111, 112, 116
β-carotene interactions	53
lung cancer studies	30
prostate cancer studies	60
Alcohol dehydrogenase, alleles in human cancer	107, 116
Anabolic competence, paradigm for nutritional intervention	197, 198
Angiogenesis, dietary modulation	12, 20
Animal models, nutrition in cancer studies	
dietary approaches	
amino acids	176–178, 181
chows	174
composition of diet	174, 175
energy intake	174, 175, 181
fatty acids	178, 181, 182
fiber	181
restricted diets	175
route of feeding	174, 178, 179
supplemented diets	175–177
extrapolation to humans	
advantages of diverse models	171, 172
diversity of metabolic abnormalities	172, 173
protein metabolism regulators	172–174
insulin studies	180–182
selection factors	167
transgenic mouse	13, 14
treated, tumor-bearing models	
chemotherapy	169, 170, 181
surgery	170, 171, 182
untreated tumor models	
animal carcinogenesis models	168
human tumor cells	168
transplatable tumors	168
rats, tumor weight and anorexia	168, 169
Anorexia	
cancer cachexia	148, 149
malnutrition in cancer	226, 239
AP-1, lung levels with β-carotene supplementation in animals	47, 48
Apoptosis	
Bcl-2 role	14
dietary modulation	10
Arginine	
clinical trials of immunonutrition	260, 261
nitric oxide effects	260
pediatric cancer patient supplementation	281
rationale for supplementation in cancer patients	260, 273
surgical cancer patient supplementation	246
Benzo(a)pyrene diol epoxide, scavenging by nutrients	6
Benzoyl peroxide, tumor promotion mechanisms	8, 9
Biomarkers, cancer trials	285–291
Bone marrow transplant, see Hematopoietic stem cell transplant	
Subject Index

Bradford Hill criteria, establishing causality 287, 288

Breast cancer
 breast feeding effects on maternal risk 115
dietary effects
 adolescence 105
 alcohol 107, 108, 111, 112, 116
 β-carotene 109, 110
 childhood 105, 112
 fat intake 106
 fiber 111
 folate 110, 116
 fruits and vegetables 108, 109, 111, 112
 infancy 104, 105, 115, 116
 soy protein 116
 vitamin A 109
 vitamin C 110
 vitamin E 110
epidemiology 103, 104
heredity 115
immigration studies 103, 104
premenopausal women studies 131, 132
sex hormone-binding globulin deficiency 120
Breast feeding
 infant diet effects on future breast cancer development 104, 105, 115
 lactation effects on breast cancer development 115

Cachexia
 asthenia 147, 155
 body composition changes 135, 141
 contributing factors with surgery 239, 240
cytokines
 acute-phase response mediation 157, 158
 food intake and malnutrition role 148, 149
 hypermetabolism role of tumor necrosis factor 151–153
 insulin resistance role 158, 159
 lipid metabolism role 153, 154, 163
 muscle wasting role 155–157
 overview 137, 147, 148, 159, 160
 protective cytokines 160
 therapeutic targeting 161, 163, 164
 weight loss induction
 ciliary neurotropic factor 151
 interferon-γ 150
 interleukin-6 150
 leukemia-inhibitory factor 150
 tumor necrosis factor 149–151, 160, 161
 insulin effects in animal models 180–182
 isolation of non-cytokine mediators 159
 medroxyprogesterone acetate treatment 141
 mortality in cancer 135, 147, 188
 palliative therapy 164, 165
 pediatric cancer patients
 consequences 276
 incidence 275, 282, 284
 pathogenesis 276
 pharmacotherapy 281, 282, 284
 risk factors 278
penoxythillin therapy 163
skeletal muscle loss
 eicosapentaenoic acid inhibition and therapy 140–142, 144, 145
 overview of mechanisms 136
 proteolysis-inducing factor assay 144
 evidence for muscle catabolism 136, 137
 glycosylation 138, 139
 isolation 137, 138
 lipid modulation 139, 140
 mechanism of action 139
 receptor 146
 regulation 144
 tumor specificity 144
 proteolytic pathways 139
Calcium
 colorectal cancer studies 76, 77
 prostate cancer studies 59, 60
Caloric restriction
 confounding factor in animal nutrition studies 20
 cycling effects 20
 historical perspective of cancer studies 21
 immune surveillance of malignant cell enhancement 11
 lifespan effects 20, 21
 mechanisms of carcinogenesis inhibition 18, 19
 protein kinase C effects 10
Cancer cachexia, see Cachexia
Cancer registry, data in nutritional epidemiology 117, 118
Carcinoembryonic antigen, marker in cancer trials 285
α-Carotene, lung cancer studies 27, 28
β-Carotene
alcohol interactions 53
breast cancer studies 109, 110
colorectal cancer studies 78–80
lung cancer studies
high-dose supplementation effects in smokers 42, 43, 45–49, 51
intervention studies 41, 42
mechanisms of prevention 41
oxidation products and carcinogenesis 43, 45
prospective cohort studies 24, 27, 28
vitamin C as reducing agent 50–52
vitamin E as reducing agent 50–52
metabolism in smokers 42, 43, 45, 48, 49, 54
prostate cancer studies 57, 58, 64, 65
Chemotherapy
classification of agents
alkylating agents 185, 186
antimetabolites 185, 186
examples 186, 187
hormones and antagonists 187
miscellaneous agents 187
natural products 185–187
historical perspective 183, 184
mechanisms in cancer 184, 185, 187
nutritional oncology
anabolic competence as paradigm for nutritional intervention 197, 198
attitudes of oncologists 203, 204
bidirectional interplay of nutrition and chemotherapy 195–197
gut translocation of bacteria 191, 192
historical perspective 188, 189
hormonal factors 204, 205
immune response 190–192
parenteral nutrition 189, 190, 202, 203
protein requirements 205
standardized nutritional assessment 192–194
supplements voluntarily taken by cancer patients 202
weight loss grading 192, 193
survival outcome 188, 189
withholding of nutrition 204
pediatric cancer patients 283
treated, tumor-bearing animal models 169, 170, 181
Children, see Pediatric cancer
Ciliary neurotropic factor, cachexia role, see Cachexia
CNERNA-CNRS-INRA, findings on diet and cancer 119
Coffee, colorectal cancer studies 81
Colorectal cancer
dietary effects
calcium 76, 77
β-carotene 78–80
coffee 81
dairy products 77
familial cancers 85, 86
fat intake
fat type effects 69
meat types, preparation, and processing 68–70
mechanisms 67, 68
fiber
mechanisms of protection 70
prospects for studies 72
sex differences 85
types of fiber 70, 71
folate
DNA integrity maintenance 92, 93
DNA methylation in mechanism 80, 90–92, 99, 100
DNA repair in mechanism 93, 94
epidemiologic studies 80
methylene tetrahydrofolate reductase polymorphisms 94–96
RNA methylation in mechanism 92
fruits and vegetables
animal studies 88
anticarcinogenic agents 72, 73
epidemiologic studies 72–74, 87
intervention trials 88
homocysteine 101
prospects for research 81, 82
Subject Index

selenium 79
sucrose 74, 75
tea 81
vitamin B6 100, 101
vitamin C 78, 79
vitamin D 77
vitamin E 78–80
epidemiology 67
exercise effects 86
markers 287
Committee on Medical Aspects of Food and Nutrition Policy, findings on diet and cancer 119
Cori cycle, activation in cachexia 151
Cyclooxygenase
inflammation role 10, 11
inhibition 11, 145
Cytochromes P450
carcinogen activation 3, 4
β-carotene metabolism in smokers 42, 43, 45, 48, 49, 54
Cytokines, see specific cytokines
Dairy products
colorectal cancer studies 77
prostate cancer studies 57
DNA methylation, folate inhibition in colon cancer 80, 90–92, 99, 100
DNA repair
dietary modulation 6
folate role in colon cancer 93, 94
Eicosapentaenoic acid, muscle catabolism inhibition in cachexia 140–142, 144, 145
Enteral nutrition
head and neck radiotherapy patients
body weight 227
effects with surgery and/or chemotherapy 230, 231
fat reserves 227, 229
lean body mass 227, 236
markers for metabolic changes 229
outpatients 232, 234, 235
parenteral nutrition and complications 234
percutaneous endoscopic gastrostomy 227, 229–232, 234–237
quality of life 229, 230, 234, 237
study design 227
hematopoietic stem cell transplant patients
children 218
complications 217
costs 217, 219
total parenteral nutrition 217–219
transition to oral diet 217, 218
tube placement 222, 223
pediatric cancer patients 277, 279
surgical cancer patients 243–245, 253
European Prospective Investigation into Cancer and Nutrition
aims 121, 122, 127
collaborating centers 121, 127–129
field work and subject recruitment 125, 126, 131
follow-up 126, 132
funding 131
sample storage 123, 125, 132, 133
study protocol 122, 123, 125, 132
Fat intake
breast cancer studies 106
colorectal cancer studies
fat type effects 69
meat types, preparation, and processing 68–70
mechanisms 67, 68
lung cancer studies 29, 30
prostate cancer studies 57, 63, 64
α-Fetoprotein, marker in cancer trials 285
Fiber
breast cancer studies 111
colorectal cancer studies
mechanisms of protection 70
prospects for studies 72
sex differences 85
types of fiber 70, 71
Flavonols, lung cancer studies 28, 29
Folate
breast cancer studies 110, 116
colorectal cancer studies
DNA integrity maintenance 92, 93
DNA methylation in mechanism 80, 90–92, 99, 100
DNA repair in mechanism 93, 94
epidemiologic studies 80
methylenetetrahydrofolate reductase polymorphisms 94–96
RNA methylation in mechanism 92
lung cancer studies 28
tissue distribution 89, 90
nucleic acid metabolism role 89, 90
296
Fruits and vegetables
 breast cancer studies 108, 109, 111, 112
 colorectal cancer studies
 animal studies 88
 anticarcinogenic agents 72, 73
 epidemiologic studies 72–74, 87
 intervention trials 88
 lung cancer studies 24, 25, 27–29, 33, 35, 36, 40
 prostate cancer studies 57, 58

Glutamine
 hematopoietic stem cell transplant
 patient treatment
 absorption 223
 clinical trials 211–215, 257, 258
 hepatic venocclusive disease effects 211, 215, 216
 infection outcomes 214, 215
 timing of therapy 216
 total parenteral nutrition 214
 tumor effects 215
 oral supplementation effects on chemotherapycinduced toxicity 257
 pediatric cancer patient supplementation 280, 281
 rationale for supplementation in cancer patients 256, 257
 surgical cancer patient supplementation 246, 247
 tumor utilization 255, 256
 Glutathione S-transferase, carcinogen detoxification 4, 5
 Growth hormone, anabolic effects in animal tumor models 263

Hematopoietic stem cell transplant
 allogeneic transplantation trends 208
 donors 207, 208
 graft-versus-host disease 208, 209, 216, 219, 220
 incidence 207
 nutrition
 body weight and outcomes 209, 210
 enteral feeding
 children 218
 complications 217
 costs 217, 219
 total parenteral nutrition 217–219
 transition to oral diet 217, 218
 tube placement 222, 223
 glutamine
 absorption 223
 clinical trials 211–215, 257, 258
 hepatic venocclusive disease effects 211, 215, 216
 infection outcomes 214, 215
 timing of therapy 216
 total parenteral nutrition 214
 tumor effects 215
 lipid modulation of graft-versus-host disease 219, 220
 related effects 209
 toxicity of marrow ablative regimens 210, 211

Homocysteine, colorectal cancer studies 101

Immunonutrition, see also Arginine, Glutamine, Omega-3 fatty acid, Ornithine-ß-ketoglutarate
 β2-adrenergic agonists 264
 ethical considerations 269
 formulations 264, 265
 hormones 263
 nutrient deficiencies in cancer patients 273
 study design 268
 surgical cancer patients
 gut-associated lymphoid tissue stimulation 252, 254
 perioperative 248, 249
 postoperative 246–248, 251, 252
 preoperative 252, 253
 randomized clinical trials 265–268

Initiation, tumors
 dietary modulation
 carcinogen activation 3, 4
 carcinogen detoxification 4, 5
 DNA repair 6
 scavenging of reactive oxygen species 5, 6
 overview 1, 2
 Insulin, anabolic effects in animal tumor models 263
 Insulin-like growth factors
 anabolic effects in animal tumor models 263
 cancer risk 120, 121
 Insulin resistance, cytokine mediation in cachexia 158, 159
 Interferon-γ, cachexia role, see Cachexia
 Interleukin-6, cachexia role, see Cachexia
Leukemia-inhibitory factor, cachexia role, see Cachexia
Lipoprotein lipase, cytokine regulation in cachexia 153, 154, 163
Lung cancer
dietary effects alcoholic 30
biases in studies 31, 32, 37 α-carotene 27, 28
β-carotene high-dose supplementation effects in smokers 42, 43, 45–49, 51
intervention studies 41, 42
mechanisms of prevention 41
oxidation products and carcinogenesis 43, 45
prospective cohort studies 24, 27, 28
vitamin C as reducing agent 50–52
vitamin E as reducing agent 50–52
fat intake 29, 30 flavonols 28, 29
folate 28
fruits and vegetables 24, 25, 27–29, 33, 35, 36, 40
lutein 27, 28
measurement error 32, 36, 37
multicollinearity of dietary variables 33
selenium 29
smoking as confounding factor in studies 32
vitamin C 24, 25, 27, 28
vitamin E 27
epidemiology 23
risk factors 23, 24, 39, 40
smoking carcinogens and oxidative damage 40
Lutein, lung cancer studies 27, 28
Meat, see Fat intake
Medroxyprogesterone acetate, cachexia treatment 141
Megestrol acetate, therapy in enteral nutrition during head and neck radiotherapy 231, 236, 238
Methylenetetrahydrofolate reductase, polymorphisms in colon cancer 94–96
Muscle loss, see Cachexia

Nutritional oncology
anabolic competence as paradigm for nutritional intervention 197, 198
attitudes of oncologists 203, 204
bidirectional interplay of nutrition and chemotherapy 195–197
gut translocation of bacteria 191, 192
historical perspective 188, 189
hormonal factors 204, 205
immune response 190–192
parenteral nutrition 189, 190, 202, 203
protein requirements 205
standardized nutritional assessment 192–194
supplements voluntarily taken by cancer patients 202
weight loss grading 192, 193
survival outcome 188, 189
withholding of nutrition 204

Obesity
measurements for cancer risk determination 120
prostate cancer risk 60, 63
tumor necrosis factor expression 164
Omega-3 fatty acid, see also Eicosapentaenoic acid
clinical trials of immunonutrition 263
pediatric cancer patient supplementation 281
rationale for supplementation in cancer patients 261
surgical cancer patient supplementation 246
Ornithine α-ketoglutarate
burn patient supplementation 258
rationale for supplementation in cancer patients 258, 259

p53
knockout mouse studies of nutritional modulation of cancer 13, 14
marker in cancer trials 290, 291
mutation in tumor progression 12

Patient-Generated Subjective Global Assessment of Nutritional Status
applications 193, 194
categorization of patients for nutritional intervention 194, 195
development 193
form 200
Pediatric cancer
malnutrition and cachexia
consequences 276
incidence 275, 282, 284
pathogenesis 276
pharmacotherapy 281, 282, 284
risk factors 278
nutritional support
chemotherapy patients 283
detrimental effects 279
enteral nutrition 277, 279
goals 277
long-term support 277, 278
parenteral nutrition 277, 280
short-term support 277
supplements
arginine 281
 glutamine 280, 281
omega-3 fatty acids 281
types of cancers 275
Pentoxyphyllin, cachexia treatment 163
Percutaneous endoscopic gastrostomy
head and neck radiotherapy patients 227, 229–232, 234–237
pediatric cancer patients 279
Progression, tumors
dietary modulation
angiogenesis 12
 cell proliferation and apoptosis 7–10
 immune surveillance 11
 inflammation 10, 11
 scavenging of reactive oxygen species 7
 overview 1, 2, 11, 12
Proliferating cellular nuclear antigen, lung levels with β-carotene supplementation in animals 46, 47
Promotion, tumors
dietary modulation
angiogenesis 12
 cell proliferation and apoptosis 7–10
 immune surveillance 11
 inflammation 10, 11
 scavenging of reactive oxygen species 7
 overview 1, 2
Prostate cancer
dietary effects
alcohol 60
calcium 59, 60
β-carotene 57, 58, 64, 65
dairy products 57
 fat intake 57, 63, 64
 fruits and vegetables 57, 58
 potential impact on incidence 62
 selenium 59, 63, 65
 study designs 56, 57
 vitamin D 59, 60
 vitamin E 58, 59, 63–65
 epidemiology 55
 risk factors 55, 56, 60
Protein kinase C
activation consequences 9
caloric restriction effects 10
phorbol ester interactions 8
Proteolysis-inducing factor
assay 144
evidence for muscle catabolism in cancer cachexia 136, 137
glycosylation 138, 139
isolation 137, 138
lipid modulation 139, 140
mechanism of action 139
receptor 146
regulation 144
tumor specificity 144
Radiotherapy
dietetic counseling 231, 233, 237
enteral nutrition during head and neck radiotherapy
body weight 227
effects with surgery and/or chemotherapy 230, 231
fat reserves 227, 229
lean body mass 227, 236
markers for metabolic changes 229
outpatients 232, 234, 235
parenteral nutrition and complications 234
percutaneous endoscopic gastrostomy 227, 229–232, 234–237
quality of life 229, 230, 234, 237
study design 227
indications for nutritional support 231, 233
megestrol acetate therapy 231, 236, 238
side effects causing malnutrition 226
Reactive oxygen species, dietary modulation of carcinogenesis
initiation 5, 6
promotion/progression 7
Resting energy expenditure, reduction with decreased food intake 239, 240
Retinoic acid receptor, lung levels with β-carotene supplementation in animals 48
Retinoids, effects on tumor promotion/progression 10
Selenium
- colorectal cancer studies 79
- lung cancer studies 29
- prostate cancer studies 59, 63, 65
Sensitivity, biomarker assays 286, 287, 289
Sex hormone-binding globulin, deficiency and breast cancer 120
Soy protein, breast cancer studies 116
Specificity, biomarker assays 286, 287, 289
Sucrose, colorectal cancer studies 74, 75
Surgery
- factors contributing to cachexia 239, 240
- malnutrition and outcomes 240, 241
- nutritional status assessment
 - anthropometrics 241, 242
 - clinical parameters 241
 - laboratory tests 242
- nutritional support
 - arginine supplementation 246
 - cost analysis 254
 - daily requirements 245, 246
 - glutamine supplementation 246, 247
 - immunonutrition
 - gut-associated lymphoid tissue stimulation 252, 254
 - perioperative 248, 249
 - postoperative 246–248, 251, 252
 - preoperative 252, 253
 - randomized clinical trials 265–268
- multimodal treatment 250
- omega-3 fatty acid supplementation 246
- overview 242
- routes
 - enteral nutrition 243–245, 253
 - formulas for tube feeding 244, 245, 253
 - total parenteral nutrition 244, 252
Tea, colorectal cancer studies 81
Tocopherols, see Vitamin E
Total parenteral nutrition
- hematopoietic stem cell transplant patients 217–219
- pediatric cancer patients 280
Total parenteral nutrition
cancer outcomes 202, 203
surgical cancer patients 244, 252
Transforming growth factor-α, activation by tumor promoters 9
Transgenic mouse, studies of nutritional modulation of cancer 13, 14
Tumor necrosis factor cachexia role, see Cachexia
expression in obesity 164
Uncoupling proteins, cachexia role 153
Vegetables, see Fruits and vegetables
Vitamin A, breast cancer studies 109
Vitamin B6, colorectal cancer studies 100, 101
Vitamin C
- breast cancer studies 110
- colorectal cancer studies 78, 79
- lung cancer studies 24, 25, 27, 28, 51
- lung tissue levels in smokers 54
- reduction of β-carotene 50–52
Vitamin D
colorectal cancer studies 77
prostate cancer studies 59, 60
Vitamin E
- breast cancer studies 110
- colorectal cancer studies 78–80
- lung cancer studies 27, 51
- prostate cancer studies 58, 59, 63–65
- reduction of β-carotene 50–52
World Cancer Research Fund/American Institute for Cancer Research, findings on diet and cancer 119