Subject Index

N-Acetylcysteine
bioavailability 15, 16
intensive care use 84
systemic inflammatory response syndrome trials 125
N-acetylglucosamine, inflammatory bowel disease therapy 57, 58
Acute phase proteins
acute phase lipoproteins 101, 102
benefits of acute phase response 84, 85
nutritional manipulation of acute phase response 215, 216
types and functions 3
Acute respiratory distress syndrome, intensive care nutrition 206
Aging
body composition assessment 248
protein exercise and metabolism 115–118
insulin resistance effects 106, 115, 116
intake requirements 107–109
metabolism changes 104–107
pulse feeding 115–117
retention improvement by modifying intake pattern and rate of digestion 109–112
vitamin/trace element supplementation effects on infection susceptibility 137, 147
AIDS, see Human immunodeficiency virus
Air displacement plethysmography, body composition assessment 243, 244
Albumin, serum levels in inflammation 3, 17
Anthropometry, body composition assessment 245, 251
Appetite, cytokine regulation 3
Arachidonic acid
eicosanoid synthesis 21, 23, 24
n-3 polyunsaturated fatty acid effects on metabolism 23, 28
Arginine
inflammation modulation 9, 15
intensive care unit use 216, 217
Bioimpedance analysis, body composition assessment 244, 245, 252
Body composition applications
aging 248
disease monitoring 248, 249
energy requirement establishment 246
growth and development 246–248
assessment
air displacement plethysmography 243, 244
anthropometry 245, 251
Subject Index

Body composition (continued)
 bioimpedance analysis 244, 245, 252
 calorimetry 254, 255
 computed tomography 242
 dual-energy X-ray absorptiometry 244, 247, 251
 hydrodensitometry 243, 244
 hydrometry 243
 magnetic resonance imaging 242, 248, 250, 251, 254
 neutron activation analysis 241, 242
 potassium-40 counting 241
 selection of technique 245, 246
 components 240
 ethnic differences 251, 253
 scope of field 239, 240
Bone, trace minerals in function 140
Bone marrow transplant
 energy intake 293
 indications 292, 293
 nitrogen balance 293
 nutritional intervention prospects 294
 total parenteral nutrition 293, 294, 300
Butyrate enema, inflammatory bowel disease therapy 55, 62
Calorimetry, body composition assessment 254, 255
Carnitine
 heart failure supplementation 284, 285, 298
 nutritional intervention for muscle 230
β-Carotene
 HIV nutritional intervention 289, 290
 inflammatory bowel disease therapy 48
 pro-oxidant actions 123
 systemic inflammatory response syndrome trials 123, 125
β-Casein, avoidance in inflammatory bowel disease 55
Chromium, glucose metabolism role 135
Chronic obstructive pulmonary disease, muscle mass and function loss 228, 229
Coenzyme Q10, heart failure supplementation 284, 285, 298
Compensatory anti-inflammatory response syndrome
 cytokine modulation 120
 detrimental outcomes 121
 features 4
Computed tomography, body composition assessment 242
Congestive heart failure, see Heart failure
Copper, HIV nutritional intervention 292
Coronary heart disease
 maternal nutrition influences 281, 297
 perioperative nutritional intervention 285–287, 298
Creatine, nutritional intervention for muscle 230, 237
Crohn’s disease, see Inflammatory bowel disease
Cyclooxygenase-2
 inhibitors 38
 n-3 polyunsaturated fatty acid effects on expression 26
Cytochrome C, muscle loss in illness 227, 237
Development, body composition assessment 246–248
Docosahexaenoic acid, see also n-3 polyunsaturated fatty acids
 functions 88
 synthesis in fish 100
Dual-energy X-ray absorptiometry, body composition assessment 244, 247, 251
Eicosanoid
 functions 22
 synthesis 21
Eicosapentaenoic acid, see also n-3 polyunsaturated fatty acids
 eicosanoid synthesis 23
 functions 88
 synthesis in fish 100
Endothelium
 fatty acid composition 92
 function 89, 90
 lipid emulsions for n-3 polyunsaturated fatty acid delivery
administration routes 100
collection 92, 93
endothelial function effects 95–97
formulations 101
metabolism 93–95, 97
optimization of preparations 95, 100
targeting into membrane phospholipid groups 98
membrane features 89, 90
nutritional intervention research prospects 302, 303
proto-oncogenes 92
signaling molecules 90, 91
Enteral nutrition
cardiac index effects 196
indications for initiation 195, 196
intensive care unit early intervention
absorption tests 159, 161, 162
access 164, 167
cardiovascular response 167
clinical trials 157, 158
complications 165, 166
contraindications 166
feasibility and tolerance 159, 161, 162
postoperative 264
preoperative 264, 268
total parenteral nutrition comparison
186, 187
Epidermal growth factor, gut adaptation role 173, 174
Exercise
damage to muscle 236, 237
training in chronic illness 229, 231, 233
Fatigue, chronic disease association 228
Ferritin, iron store estimation 147
Fetuin, immune response suppression 120, 121
Glucagon-like peptide-2, gut adaptation role 174
Glutamine, depletion in injury 14, 15
Glutathione
gut adaptation role 175, 176, 178, 179
inflammation modulation 9, 15, 16
inflammatory bowel disease therapy 45–47, 56
intensive care unit
depletion 207, 208
immunomodulation 208, 209
replacement 209–211, 216, 217
intestinal failure management 180
systemic inflammatory response syndrome trials 123–125
Growth hormone
gut adaptation role 172, 173, 179
heart failure supplementation 283, 284
Gut adaptation, see Intestinal failure
Heart failure
antioxidant therapy 81, 82
cardiac mitochondrial function 284
carnitine supplementation 284, 285, 298
clinical features 282, 283
coenzyme Q10 supplementation 284, 285, 298
growth hormone supplementation 283, 284
micronutrient deficiencies 283
muscle mass and function loss 228, 229
nutritional intervention outcomes 283
prospects 285
taurine supplementation 284, 298
Heat shock proteins, anti-inflammatory response 4
Human immunodeficiency virus
African indigenous plant therapy 299
fatty acid deficiency and susceptibility 288, 289, 299
malnutrition 287
nutritional intervention goals 287, 288
guidelines 274, 275
infants 299, 300
vitamin and mineral supplements and functions 289–292
oxidative stress 13, 14
poverty and AIDS 275, 276
prevalence of infection 287
probiotic use 299, 300
Hydration of fat-free mass, mammals 239, 240
Hydrodensitometry, body composition assessment 243, 244
Subject Index

Hydrometry, body composition assessment 243
Hypercholesterolemia, maternal nutrition influences 281, 297
Hypertension, maternal nutrition influences 281

Immunonutrient formulations, see Intensive care unit

IMPACT, systemic inflammatory response syndrome trials 31

Inflammation
adhesion molecules
 cell migration 19
n-3 polyunsaturated fatty acid effects 25, 26, 28

cytokine modulation
 anti-inflammatory cytokines as prognostic indicators 5, 6
 overlapping functions 16
overview 1
pro-inflammatory cytokines
 body temperature regulation 3
cascade 119
damaging effects 5, 6, 8
genotype effects on production 6, 7, 11, 12
human immunodeficiency virus 13, 14
metabolic effects 2–4
n-3 polyunsaturated fatty acid dietary effects 24–28
neutralization studies 21
oxidative stress 4, 7, 8
suppression 4, 5
types 20
gut, see Inflammatory bowel disease immunonutrient modulation arginine 9, 15
efficacy improvement 11
 glutamine 9, 15, 16
n-3 polyunsaturated fatty acids and variability of response 9, 10
targets 9
mast cell role 13
nutritional intervention research prospects 301, 302
overview of response 1, 19, 20
systemic, see Systemic inflammatory response syndrome
T-cell suppression 8

Insulin resistance
 chromium and glucose metabolism 135
glycemia control in intensive care unit 168
maternal nutrition influences 281, 297
protein metabolism effects in aging 106, 115, 116

Insulin-like growth factor
 gut adaptation role 173

Intensive care unit, see also specific conditions
N-acetylcysteine use 84
course of inflammation and organ failure 203
early timing of nutritional support
animal studies 154, 156
definitions 152, 154
enteral nutrition absorption tests 159, 161, 162
access 164, 167

antioxidant status 48–51, 83
butyrate enema therapy 55, 62
β-casein avoidance 55
dietary particles in immune response 58
enteral nutrition trials 265
fiber effects 64
nutritional intervention
 Crohn’s disease model 42, 43
 glutamine 56
 glutathione 45–47
 n-3 polyunsaturated fatty acids
 gut function 52, 53
 trials 53–55
 N-acetyl glucosamine 57, 58
 rationale 41, 42
 research prospects 302
 selenium 48
 trial design 51, 52
 vitamin A 48
 vitamin C 47, 48
 vitamin E 47
 zinc 48, 64
 oxidative stress 42–45
 pathogenesis 41, 48, 49
 pouchitis 64
 probiotics for therapy 56, 57, 61–65

Insulin resistance
 chromium and glucose metabolism 135
glycemia control in intensive care unit 168
maternal nutrition influences 281, 297
protein metabolism effects in aging 106, 115, 116

Insulin-like growth factor
 gut adaptation role 173

Intensive care unit, see also specific conditions
N-acetylcysteine use 84
course of inflammation and organ failure 203
early timing of nutritional support
animal studies 154, 156
definitions 152, 154
enteral nutrition absorption tests 159, 161, 162
access 164, 167
Subject Index

cardiovascular response 167
clinical trials 157, 158
complications 165, 166
contraindications 166
feasibility and tolerance 159, 161, 162
justification 152, 154, 156
overview 151, 152
presurgical oral glucose administration 165
research prospects 303, 304
total parenteral nutrition 156, 157, 168, 183
endpoints of nutritional studies 153
glutamine
depletion 207, 208
immunomodulation 208, 209
replacement 209–211, 216, 217
glycemia control 168
hyperbaric oxygen risks 82
immunonutrient formulations
total parenteral nutrition outcomes 204, 205
goals of therapy 203, 204
indications 205, 206
patient population differences 203
sepsis 216
survival data 201, 202
infection rate 208
malnutrition progression 151, 153
meta-analysis of nutritional interventions 214, 215
nonocclusve bowel necrosis 165
nutrition therapy risks
abnormal delivery 200, 201
classification 200
disturbed physiological processes 201
obese patient nutrition 166
patient types 152, 167
protein intake 166
risks of death 199
starvation 153, 154, 162
Interleukin-11, gut adaptation role 174
Intestinal failure
etiology 169–171
glutathione effects 180
gut adaptation
animals vs humans 181
growth factors and modulators
epidermal growth factor 173, 174
glucagon-like peptide-2 174
glutamine 175, 176, 178, 179
growth hormone 172, 173, 179
insulin-like growth factor 173
interleukin-11 174
keratinocyte growth factor 174
neurotensin 174
short-chain fatty acids 176
transforming growth factor 174, 175
history of studies 171
infants 178–180
short bowel syndrome 169, 170, 178–181
types 169
Iron
acute phase response
supplementation 145, 146
HIV nutritional intervention 291
supplementation safety in acute disease 146, 147
Keratinocyte growth factor, gut adaptation role 174
Kwashiorkor, nutritional rehabilitation 132
Leptin, cytokine regulation 4
Leucine
kinetics of metabolism in whey and casein meals 110, 111
muscle anabolism induction 106, 107
Lipid emulsions, n-3 polyunsaturated fatty acid delivery
administration routes 100
composition 92, 93
endothelial function effects 95–97
formulations 101
metabolism 93–95, 97
optimization of preparations 95, 100
targeting into membrane phospholipid groups 98
Lipopolysaccharide
cell activation in inflammation 19, 20

311
Lipopolysaccharide (continued)
 n-3 polyunsaturated fatty acid dietary
 effects in challenge 30
 shock induction 21

Magnesium, HIV nutritional intervention 291

Magnetic resonance imaging, body
composition assessment 242, 248, 250, 251, 254

Malnutrition, hospital
consequences
 complications 260, 261, 272
 length of hospitalization 261
 mortality 261, 272, 274
 cost analysis 263
 prevalence 258, 259, 271, 305
 risk factors 259, 260

Mood, micronutrient supplementation
effects 148, 149

Multiple organ failure, total parenteral
nutrition 190, 191

Muscle
 aging and loss 104, 105, 235
 apoptosis in illness 226, 227
 body composition 219
 branched-chain amino acids and
 anabolism 106, 107
 catabolism in inflammation and illness
 2, 3, 219, 224, 236
 chronic disease and loss mechanisms
 228, 229
 contractility loss in sepsis and critical
 illness 224–226
 cytokines in wasting 236, 238
 electrical stimulation therapy 231, 233
 endurance capacity loss in critically ill
 patients 227

exercise
 damage to muscle 236, 237
 training in chronic illness 229, 231, 233
 inactivity and bed rest, metabolic
 consequences 222, 223
 insulin-like growth factor therapy
 231
 neural control of gene expression and
denervation effects 223, 224, 238
 nutritional intervention
 carnitine 230
 creatine 230, 237
 rationale 219, 220
 physiology in healthy subjects
 endurance 221, 222
 strength 220, 221
 physiotherapy 234, 235
 rate of loss in intensive care unit
 235, 236
 respiratory muscle function in illness
 237, 238
 sarcopenia, see Sarcopenia
 selenium role in function 140
 sodium-potassium ATPase 235

Myocardial infarction, circulating vitamin
levels 83, 84

n-3 polyunsaturated fatty acids, see also
Docosahexaenoic acid,
Eicosapentaenoic acid
adhesion molecule expression effects
25, 26, 28
administration and dosing 37
anti-inflammatory activity and
variability of response 9, 10, 24–30
dietary sources 22
effects on arachidonic acid
metabolism 23, 24
end points in clinical trials 39, 40
excess intake risks 102
functions 88
immunosuppressive effects 39
inflammatory bowel disease
gut function 52, 53
trials 53–55
ischemia tolerance mechanisms 99
lipid emulsions, see Lipid emulsions,
n-3 polyunsaturated fatty acid
delivery
metabolism 21, 22, 37
platelet function effects 99
potential benefits in acute and
chronic disease 88, 89
psoriasis treatment 38
structure 21
systemic inflammatory response
syndrome effects 30–32
n-6 polyunsaturated fatty acids
metabolism 21, 22, 37
structure 21
Neuregulin, downregulation and muscle
effects in illness 226
Neurotensin, gut adaptation role 174
Neutron activation analysis, body composition assessment 241, 242
Nitric oxide
endothelium production 90, 91
peroxynitrite formation 91
NRAMP1, genotype effects on inflammatory response 6, 7
Nuclear factor-κB
n-3 polyunsaturated fatty acid dietary effects 28, 29, 36, 37
oxidative stress and inflammatory response 7, 8, 122
signaling 28
Nutritional therapy
clinical trials of efficacy 263–265
cost-effectiveness studies 265–269
history of study 257, 258
hospital length of stay impact 266, 267
implementation 269, 274
indications 273
rationale 258–260
Oxidative stress
cell injury concept 76, 77
cytokine modulation 4, 7, 8
defenses
antioxidants and enzymes 74, 75, 122, 123
cytochrome oxidase 75
vitamins 122
HIV pathogenesis 13, 14
hyperbaric oxygen risks in intensive care 82
inflammatory bowel disease 42–45
pancreatitis 14, 15
prevention rationale 67, 81, 82
reactive oxygen species
definition 68
physiological functions 72–74
sources 43, 44, 68, 70–72, 76
systemic inflammatory response syndrome 121, 122
Pancreatitis
oxidative stress 14, 15
total parenteral nutrition 190, 194, 195
Peroxisome proliferator activated receptors
inflammation inhibition 29, 30
n-3 polyunsaturated fatty acid dietary effects 29, 30
types 29
Potassium-40 counting, body composition assessment 241
Pregnancy
fetal origins hypothesis 278, 279
mortality, geographic distribution 277, 278
nutritional intervention indications and prospects 281, 282
nutritional intervention research prospects 306
programming of tissues 279, 280
undernutrition effects on later development
coronary heart disease 281, 297
hypercholesterolemia 281, 297
hypertension 281
insulin resistance and diabetes 281, 297
overview 278–280
Probiotics
HIV intervention 299, 300
inflammatory bowel disease therapy 56, 57, 61–65
intestinal failure management 179
Propranolol, burn injury treatment 130, 131
Protein
degradation and healing 130
elderly intake and metabolism, see Aging
infection effects on metabolism 145
intake and homeostasis
amino acid composition 103
bioavailability factors 103, 104
nitrogen balance 103
intensive care unit intake requirements 166
macro-element effects on nitrogen balance 133
trace element effects on nitrogen balance 135
Psoriasis, n-3 polyunsaturated fatty acid infusion 38
Reactive oxygen species, see Oxidative stress
Risk-benefit analysis, nutritional therapy 265, 266, 305
Sarcopenia
- etiology in aging 105, 106
- quality of life impact 116, 117
- resistance exercise in prevention 117

Selenium
- cognition role 140, 141
- deficiency features 148
- infection virulence effects 139
- fertilizer supplementation 147, 148
- HIV nutritional intervention 292
- immune system effects 136
- inflammatory bowel disease therapy 48
- muscle function role 140
- systemic inflammatory response syndrome trials 123, 139

Short bowel syndrome, intestinal failure 169, 170, 178–181

Short-chain fatty acids
- butyrate enema, inflammatory bowel disease therapy 55, 62
- gut adaptation role 176

Spermine, immune response suppression 120, 121

Syndrome X, clinical features 253

Systemic inflammatory response syndrome
- anticytokine therapy 123
- antioxidant status 123, 124
- antioxidant therapy
- N-acetylcysteine 125
- β-carotene 123, 125
- glutamine 124, 125
- glutathione 123, 125
- guidelines 126, 127, 131
- selenium 123, 139
- vitamin E 123, 125, 126

benefits in disease outcomes 120
- clinical presentation 119, 120
detrimental outcomes 121
- induction 4
- n-3 polyunsaturated fatty acid dietary effects 30–32
- oxidative stress 121, 122
- resolution 120, 121

Tanner stage, body composition
- correlation 247

Taurine, heart failure supplementation 284, 298

Thiamine, supplementation in aging 148

Total parenteral nutrition
- bone marrow transplant patients 293, 294, 300
costs 196, 266
eyear intervention 194
- enteral nutrition comparison 186, 187
gut starvation damage 187, 188, 191
indications based on clinical judgment 190, 191
intensive care unit 156, 157, 168, 183
intestinal failure, see Intestinal failure
meta-analysis of clinical studies
- applications 191, 192
duration of therapy 184, 186
- endpoints 184–186
- grades of recommendation 183, 195
- variability of patient populations 184
- multiple organ failure patients 190, 191
- pancreatitis patients 190, 194, 195
- preoperative 264

Trace elements, see also specific elements
- administration routes 149
- bone function roles 140
- optimization of intake 141, 142
- prospects for study 142, 143

Transforming growth factor, gut adaptation role 174, 175

Tumor necrosis-α
- antibody detection 16, 17
- fish oil anti-inflammatory response variability 10
- genotype effects on expression 6, 7

Uncoupling protein, knockout mice 83

Vitamin A, see β-Carotene

Vitamin B6, HIV nutritional intervention 289, 290

Vitamin B12, HIV nutritional intervention 289, 290

Vitamin C
- inflammatory bowel disease therapy 47, 48
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>iron absorption effects 82, 83</td>
</tr>
<tr>
<td>pro-oxidant actions 82</td>
</tr>
<tr>
<td>Vitamin E</td>
</tr>
<tr>
<td>immune response effects in aging 147</td>
</tr>
<tr>
<td>inflammatory bowel disease therapy 47</td>
</tr>
<tr>
<td>systemic inflammatory response syndrome trials 123, 125, 126</td>
</tr>
<tr>
<td>Zinc</td>
</tr>
<tr>
<td>brain trauma patient supplementation 138, 139</td>
</tr>
<tr>
<td>catabolism and clearance 145</td>
</tr>
<tr>
<td>deficiency features 148</td>
</tr>
<tr>
<td>functions 136</td>
</tr>
<tr>
<td>HIV nutritional intervention 289, 291</td>
</tr>
<tr>
<td>immune system effects 136, 146</td>
</tr>
<tr>
<td>infection susceptibility effects in children 137, 138</td>
</tr>
<tr>
<td>inflammatory bowel disease therapy 48, 64</td>
</tr>
<tr>
<td>protein metabolism role 135</td>
</tr>
<tr>
<td>vitamin A interactions in infection prevention 138</td>
</tr>
</tbody>
</table>