Subject Index

N-Acetylcysteine
 effects on glutathione levels 188, 196
 metabolism 196, 206

Acute renal failure
 etiology 247
 nutrition
 enteral 248, 249, 252
 oral 248
 parenteral 248
 requirements 248, 254
 treatment 247, 248

Alanine
 portal availability in pigs 27
 splanchnic uptake efficiency 49

Albumen
 splanchnic synthesis 50, 51, 54, 55, 59, 60, 275
 value of dietary formulations 86

Amino acid, see also geradeheud
 composition as physicochemical property 110, 111
 conditionally indispensable 199, 200
 essential vs nonessential 200
 factors affecting absorption from hydrolysates 259–261
 fortification 117, 118
 metabolism in disease 273, 274
 overview of functions 2, 3
 sequence considerations in proteins 111, 127, 128

Amino acid transport
 cystinuria gene defects 64, 66
 enterocytes 72
 evaluation techniques 66, 67
 history of study 63, 64
 regulation by diet 72–74
 stress effects 86
 transporter types, substrates, and distribution 65, 68, 257, 258

Aminoacyl-tRNA, protein synthesis
 measurement 51

Ammonia
 assimilation pathways 6, 7
 intestinal production 33, 34

Arginine
 conditional indispensibility 173
 functions 207
 immunomodulation 278
 intestinal synthesis 35, 36, 45
 metabolism 206, 207
 portal availability in pigs 27
 splanchnic uptake efficiency 3, 49
 supplementation in disease
 animal models 207
 clinical trials 207, 208

Aspartate, portal availability in pigs 27

Bacteria
 intestinal content 157
 intestinal permeability alterations in trauma 159, 160
Subject Index

lysine synthesis in human gut 8, 9, 100, 101, 107, 108
synthesis in human gut 8, 9
threonine
Bombesin, immunomodulation 166–168, 170
Casein
 gastric emptying 87, 88, 222
 hydrolysate digestibility 259, 260
Cholecystokinin
 immunomodulation 170
 regulation of release 240, 243, 244, 246
Chronic pancreatitis, see Pancreatitis, chronic
Chronic renal failure
 homocysteine levels 256
 leptin and appetite 256
 malnutrition 249, 255
 nutrition
 acidosis effects 254, 255
 diet composition 250, 251
 enteral nutrition
 adults 252
 children 251
 monitoring 255
 requirements 249, 250, 254
Crohn’s disease, protein nutrition 87, 225, 265–267, 271, 272
Cysteine
 catabolic state effects
 circulating concentrations 181, 182, 191, 192
 metabolic disturbances 182, 183
 catabolism 178
 compartmentation of metabolism 194
 conditional indispensability 192, 205
 fortification 117, 118
 functions 174, 205, 206
 glutathione synthesis 175–178
 muscle levels 23
 nutritional regulation of metabolism
 catabolism 179, 180
 synthesis 178, 179
 reliability of tracer assays 21
 splanchnic utilization 40
 synthesis 175, 192, 193, 205
Cystic fibrosis
 arachidonic acid role 242
 malnutrition 242
 therapy 242, 246
 pathophysiology 241
Cystine
 glutathione relationship 14–16, 22, 23, 187
 methionine relationship in diet 13, 14
 splanchnic uptake efficiency 3
 uptake in catabolic states 187
Cystinuria, oligopeptide transport 259
Digestibility, proteins
 absorption overview 221–224, 261
 assessment 25, 26
 efficiency of enteral formulas 229–231
 indications for protein, peptide, or amino acid solutions 224, 232, 261
Digestion
 normal physiology 221–224
 phases 112, 113, 257
Dipeptide
 clinical trials in disease 211
 solubility and stability 210, 211
 transport, see Peptide transport
Fast protein concept
 absorption kinetics evaluation 124, 125
 aging effects 130, 133
 appetite regulation 132
 clinical implications 129, 130, 133, 276
 factors affecting absorption 124
 overview 116, 121
Food matrix, physiochemical interactions 112
Glucose transport
 energetics 70
 regulation of SGLT1 expression 72
 transporter types and distribution 65
Glutamate
 catabolic state effects 194
 cellular uptake 44, 45
 portal availability in pigs 27
 splanchnic uptake efficiency 26, 49
 visceral utilization in milk-fed piglets 28, 43
Glutamine
 conditional indispensability 173
 fortification 117
 immunomodulation 166, 278
 intestinal utilization for energy 32–34, 158
levels in disease 218, 219
metabolism 201
portal availability in pigs 27
splanchnic uptake efficiency 26, 49
stability 219
supplementation in disease
animal models 201, 202
clinical trials of enteral feeding
202–204, 217, 218
composition of commercial
formulae 204, 205
safety 218
visceral utilization in milk-fed piglets 28
Glutathione
assay in gut 42
catabolic state effects
circulating concentrations 183, 184,
191, 194
consequences of deficiency 186
oxidative stress 184
synthesis rate 185, 186, 188
degradation 177, 178
dietary sulfur amino acid effects on
metabolism 14–16, 22, 23, 40,
180, 181, 188
feeding effects on levels 187, 188
functions 175, 178
intestinal synthesis 36
redox ratios 176, 194
structure 175, 176
synthesis 176, 177
Glycine, portal availability in pigs 27
Gut associated lymphoid tissue
anatomical units 162, 163
enteral feeding stimulation 163
Hartnup disease, oligopeptide transport 259
Homocysteine, levels in renal failure 256
Hydrosylate, see Protein hydrosylate
Immune dysfunction
diet composition effects in injury 171,
172
diet consistency effects 169, 170, 172
gut associated lymphoid tissue
anatomical units 162, 163
enteral feeding stimulation 163
immunization, enteral feeding effects
of host response 163
immunoglobulins 161–163, 165
innate mucosal defense factors 160,
161
intestinal permeability alterations to
macromolecules and bacteria in
trauma 159, 160
protein catabolic factors 157, 158
surrogates of enteral feeding
bombesin 166–168, 170
cholecystokinin 170
glutamine 166
Insulin
postprandial protein gain role 123, 124
vasodilator activity 277
Intestine
absorption
disease states 224, 225
overview 221–224
amino acids as energy sources 31–34,
61
bacterial content 157
biosynthetic pathways using amino
acids 35, 36
enteral management of chemotherapy
patients 236
metabolic compartmentation 35–37, 41
nitrogen flow
amino acid balance required for
normal metabolism 101, 102
amino acids in nitrogen exchange
99, 100
chemical exchange factors 105, 106
dietary fiber effects 98, 99
fates of urea tracer placed directly
in colon 96–98
hydrolysis in nitrogen balance 89,
99
lactose-ureide studies of colon
metabolism 98, 106
large intestine 94
quantitative flow 90, 91
sheep model caveats 106, 107
small bowel 91, 92
urea kinetics 94, 95
oral feeding and atrophy prevention
55, 158, 159
peptide transport, see Peptide transport
permeability alterations to
macromolecules and bacteria in
trauma 159, 160
protein synthesis and accretion 29–31,
58
Subject Index

reabsorption of amino acids, measurement 30, 31
regional differences in mucosal free leucine labeling 29, 30
transit time 223
visceral amino acid utilization in milk-fed piglets 28
Isoleucine, portal availability in pigs 27
Leptin, levels in renal failure 256
Leucine
absorption kinetics evaluation 124, 125
intestinal utilization for energy 34
nitrogen gain mechanisms during feeding 122
oxidation rates
administration route effects 4
meal size effects 12
reliability of tracer assay 21
postprandial protein utilization measurement using carbon-13 leucine balance 138, 139, 150, 152, 153
oxidation variables 149, 150
protein degradation suppression 60
splanchnic rates of release and synthesis 49, 50
splanchnic uptake efficiency 3, 4, 26, 44, 49, 54
visceral utilization in milk-fed piglets 28
Lysine
biological availability of fortification derivatives 118
intestinal utilization for energy 34
microbial sources in human gut 8, 9, 100, 101, 107, 108
oxidation rates by administration route 4
portal availability in pigs 27
splanchnic uptake efficiency 26, 49
visceral utilization in milk-fed piglets 28, 41
Malnutrition, enteral feeding of protein chronic renal failure 249, 255
cystic fibrosis 242
intact gastrointestinal function 262
moderately impaired gastrointestinal function 262, 263
Methionine
catabolic state effects
circulating concentrations 181, 182, 193
metabolic disturbances 182, 183
Cystine relationship in diet 13, 14
fortification 117
metabolism 175, 176, 192, 193
portal availability in pigs 27
reliability of tracer assays 21
splanchnic uptake efficiency 3
Milk
bioactive proteins and peptides 117
cow’s milk intolerance 236, 237
Mucin, synthesis 31, 42, 43
Multidrug resistance, see Organic anion transport
Nitrogen balance
stress response 1
urea role, see Urea
Nonspecific nitrogen
enteral formulations 7
roles in diet 7, 8
Organic anion transport
regulation of multidrug resistance proteins 71, 72
transporter types, substrates, and distribution 65, 66, 71
Ornithine
metabolism and functions 208
supplementation with α-ketoglutarate salt 208, 209, 211
Pancreatic disease, enteral feeding of protein 263, 264, 272, 273
Pancreatitis, chronic
antioxidant status 240, 241
enteral treatment approaches 241, 243–245
fatty acid analysis 244, 245
nutritional regulation of exocrine pancreas 240, 245, 246
pathophysiology 239, 240
Peptide transport
enterocytes 72
evaluation techniques 66, 67
history of study 63, 64
intestinal transport, overview 258, 259
oligopeptide transport, nutritional significance 259–261
parenteral nutrition considerations 85
PepT1
energetics of transport 69, 70
intestinal distribution and regulation 72, 73
peptide specificity 70, 71
structure 69
regulation by diet 73–76, 84, 85
stress effects 86
transporter types, substrates, and distribution 65, 68, 69, 258, 259
Phenylalanine
oxidation rates by administration route 4
portal availability in pigs 27
splanchnic rates of release and synthesis 49, 50, 59
splanchnic uptake efficiency 3, 26, 49
visceral utilization in milk-fed piglets 28
Portal blood flow, regulation 277, 278
Postprandial protein gain
factors affecting
hyperaminoacidemia 123, 124
insulin 123, 124
substrate availability 123
nitrogen gain mechanisms during feeding 121, 122
Postprandial protein utilization
calculation 10, 135
clinical relevance 155
factors affecting
aging 141, 143, 153, 154
leucine oxidation 149, 150, 154, 155
meal size 146–149
overview 10–13, 142
protein concentration in meals 139, 141
protein quality in meals 144, 145
measurement using carbon-13 leucine balance 138, 139
metabolic model 136, 137
net protein utilization comparison 153
Proline
intestinal synthesis 35, 36
portal availability in pigs 27
Proteases
cleavage specificity 111, 112
protein diet effects on exocrine pancreas 115, 116
Protein digestibility, see Digestibility, proteins
Protein hydrolysate
characterization of peptides 75
degree of hydrolysis and digestibility 113–115
peptide transport regulation 75, 76
prediction of peptide composition 113
Pulse feeding, effects on protein retention in elderly women 12
Renal failure, see Acute renal failure
Chronic renal failure
Serine, portal availability in pigs 27
SGLT1, see Glucose transport
Short bowel syndrome, protein nutrition 87, 107, 108, 225, 264, 265
Slow protein concept
absorption kinetics evaluation 124, 125
absorption rate effects on whole body protein kinetics 125–129
aging effects 130, 133
appetite regulation 132
clinical implications 129, 130, 133, 276
factors affecting absorption 124
overview 116, 121
Splanchnic protein synthesis, regulation by enteral feeding
albumin synthesis 50, 51, 54, 55, 59, 60
amino acid uptake efficiency, see geradesteheud
animal models 52
blood circulation 47
diet composition effects 52–54
fasting state 48–52
fractional synthetic rate measurement 48, 51, 52, 58
nitrogen compound exchange components 48
oxygen consumption effects of meal composition 56, 60, 61
Taurine
antioxidant activity 209, 210
catabolic state effects 181
conditional indispensability 209
functions 174, 209
metabolism 209

283
Subject Index

- Supplementation in disease 210
 - Uptake 277
- Tertiary structure, proteins 111
- Threonine
 - Gut utilization for glycoproteins 31
 - Microbial sources in human gut 8, 9
 - Oxidation rates by administration route 4
 - Portal availability in pigs 27
- Tolerance, enteral nutrition solutions
 - Children 235
 - Clinical symptoms of intolerance 226
 - Factors affecting
 - Endogenous factors 228
 - Formula composition effects 226, 227, 232
 - Overview 226
 - Timing and rate of administration effects 227, 228
- Total body protein
 - Aging effects 10
 - Synthesis 122
- Total parenteral nutrition
 - Efficacy and hazards 237, 238
 - Peptide transport considerations 85
- Trypsin inhibitors, inactivation 116
- Tyrosine
 - Clinical use 206
 - Conditional indispensability 206
 - Portal availability in pigs 27
- Urea
 - Meal size effects on excretion 12
 - Nitrogen flow in intestine
 - Amino acid balance required for normal metabolism 101, 102
 - Amino acids in nitrogen exchange 99, 100
 - Chemical exchange factors 105, 106
 - Dietary fiber effects 98, 99
 - Fates of urea tracer placed directly in colon 96–98
 - Hydrolysis in nitrogen balance 89, 99
 - Lactose-ureide studies of colon metabolism 98, 106
 - Large intestine 94
 - Quantitative flow 90, 91
 - Salvage in colon 8, 94
 - Sheep model caveats 106, 107
 - Small bowel 91, 92
 - Urea kinetics 94, 95
 - Nitrogen intake effects on production and hydrolysis 5, 6
- Valine, portal availability in pigs 27