Subject Index

Page number followed by f indicates a figure; a page number followed by t indicates a table.

A
Acetate
 effects on carbohydrate and lipid metabolism, 189
Aconitase assay
 for free and bound iron, 134
Aggressive nutrition
 growth of VLBW infants and, 227
 low-birth weight infants
 sick/hospitalized, 62
 vs. standard nutrition
 in early growth failure, 61–62
Albumin levels
 in babies with/without chronic lung disease, 133
Allergy
 breast milk vs. formula and, 16–17
 hydrolyzed formula and, 150, 151
 LCPUFA-related, 51
Amino acid intake
 parenteral
 BUN concentration and, 56f
 urinary nitrogen excretion and, 55–56, 56f
 of preterm infants
 first 14 days, 230
 for prevention of early growth failure, 55–56, 56f
Amino acids
 in casein
 bovine vs. human, 146
 gold standards for, 145
 insulin secretion and, 163
 iron-induced oxidative damage of, 124
 parenteral
 for preterm infants, 170
 plasma concentrations of, 145–147
 assessment of, 166
 postnatal intravenous
 in ELBW infants, 157, 163
 reference values for, 145–146, 146f
 supply in VLBW infants
 qualitative aspects of, 66–67
 toxicity of, 166
 Antioxidant defense system(s)
 augmentation with exogenous enzymes, 113–115
 catalytic, 108, 108f
 hyperoxia challenge of
 in premature vs. term animals, 112–113, 113f
 noncatalytic, 108, 108f, 112
 oxygen free radicals and, 108–109, 109f
 prenatal maturation of
 animal studies, 110f, 110–111
 human studies, 111–112, 112f
 pulmonary
 immaturity in preterm infant, 111–112, 112f
 impaired development of, 116
Antioxidant enzymes
 exogenous administration of, 113–114
 liposome-encapsulated, 114
 molecular biology techniques in, 114–115
 in surfactant preparations, 114
 via transfection, 114–115
Antioxidants
 induction in small preterm infants, 120
 prenatal combination, exogenous, 119
 preventive, 122–123
Arachidonic acid
 accumulation in fetal brain, 51–52
 depletion of
 and growth, 50
 during first month of lactation, 37f
 in LCPUFA-enriched preterm formula and human milk, 42–43
 in preterm formulas, 42–43
Ascorbate, 108, 108f

B
Bacterial translocation
 bacterial overgrowth and, 189–190
 defenses against, 189, 190
 NEC and, 189
 risk factors for, 189–190
Bacteriologic surveillance
 of human milk, 105–106
Bacteroides species
 in human gut, 179–180
 polysaccharides utilization, 186
 SCFA products of, 186
 short-chain fatty acid production by, 186
Bifidobacteria
 beneficial effects of, 185f
 in gut, 180
Bifidobacteria (contd.)
in human colostrum and milk, 203
inhibition of pathogenic organisms by,
185–186
oligosaccharide effect on, 182, 185
as probiotic, 185
in stool
in breast-fed vs. formula-fed infants, 181f, 181–182
Bile aspirates
retrograde duodenal motility and, 220
Bilirubin
intravenous lipid effect on, 72
Bilirubin levels
fortified human milk vs. preterm formula,
104–105
Bleomycin assay
for free and bound iron, 133, 134
for nonprotein-bound iron, 125, 127, 127f
Body composition
in preterm infants
normative data, 157, 159
Body fatness
gender and, 17–18
Body mass index (BMI)
neurodevelopment and, 30
post term
and cognitive performance at 8 years,
25–26, 26f, 27, 30
Bolus feeding
quantity and timing of, 241
Bone mineralization
breast milk and, 18
early nutrition in preterm neonates, 9–10, 14, 18
with fortified human milk vs. preterm formula, 98
with fortified vs. partially supplemented human milk, 98
Bovine milk
TGFin
effect on human intestine, 255
Bovine milk protein-based fortifier (BMF)
in fixed vs. variable regimens, 85–87
BPD. See Bronchopulmonary dysplasia (BPD)
Brain
fetal
accumulation of DHA and arachidonic acid in,
51–52
psychometric vs. imaging studies of, 14
Breast milk
antiinflammatory properties of
and pulmonary problems, 119–120
defense factors in, 201
nutrient analysis of, 232
protective role of, 236
in NEC, 201
vs. formula
allergy and, 16–17
Bromchopulmonary dysplasia (BPD)
early intravenous lipids and, 70–71
oxygen toxicity of premature birth and, 112
pentane and ethane production-associated, 120
prevention of
fluid restriction in, 224, 230–231
Butyrate
effects of
positive and negative, 196
function of
antibacterial, 188
as enterocyte substrate, 188
in modulation of nucleic acid, 188
physiological role of, 187
C
Calcium supplementation
in human milk formula, 81, 97
interaction with fatty acids, 98–99, 101, 104
with phosphorus supplementation, 231
Carbohydrate
bacterial fermentation of, 186
Cardiovascular disease
early nutrition and, 6
Casein
bovine
vs. bovine whey proteins and protein needs, 167
hydrolysis of human, 140
Casein-predominant formula (CPF)
nitrogen balance and, 140, 142f–143f, 143, 144f
nitrogen utilization and, 143–145
CAT. See Catalase (CAT)
Catalase (CAT), 107, 108r
maternal corticosteroid induction of, 118
Catches up growth
amino acid needs for, 67–68
nutritional requirements for, 59
protein and energy intake predicted for, 59–60, 60f
protein needs for, 67–68
time to regain birthweight and, 61
work of ventilation in, 67
Ceruloplasmin
antioxidant function of, 108, 108r, 122, 123f, 125, 126f
plasma levels of
in babies with/without chronic lung disease, 133
blood transfusions and, 130
Children’s Hospital of Iowa. See also Nutrient intakes
study of actual nutrient intakes and growth of ELBW infants, 221–228
Cholestasis
TPN-associated, 77
Cholesterol levels
- breast-fed and formula-fed infants and, 5–6
- early nutrition and, 5–6
Cholesterol outcomes
- critical programming windows and, 4–5
- pre- and postnatal nutrition and, 4–5
Clinical research
- stages of, 2
Clusters
- maturational changes in, 213
- in preterm infant gut motility, 213, 214
CMV. See Cytomegalovirus (CMV)

Cognitive performance
- early growth and, 19–20
- early nutrition and, 5, 19
- gender differences in, 19, 25, 26–27
- factors associated with, 23
- head circumference and, 26, 30–31
- illness/hospitalization post term and, 27, 30
- interrelationship of neonatal, social, demographic measures and, 23, 24
- neonatal weight gain and, 23r, 23–25, 24t
- gender differences in, 24–25
Colon
- bacterial composition of, 179–180
- fermentation in, 186–187
- carbohydrate, 186
- protein, 186
Colostrum
- cells in, 202–203
- oligosaccharides in, 202
- in prevention of NEC, 241
- protein content of, 168
- secretory IgA in, 202
Constipation
- in early feeding of ELBW infants, 244
Copper
- as prooxidant, 136
Corticosteroids
- effect on bacterial colonization, 194
Cow's milk-based formula
- protein content of, 168
CPF. See Casein-predominant formula (CPF)
Cyclooxygenase
- peroxidation stimulation of, 74
Cysteine
- supplementation of, 67
Cytokines
- proinflamatory
- in necrotizing enterocolitis, 199
Cytomegalovirus virus (CMV)
- transmission in breast milk, 93, 106

D
Delayed feeding
- adverse effects of, 234–235
- animal studies of, 234
- gut atrophy with, 234, 235t

incidence of NEC with, 234
questioning of, 235–236
undernutrition with, 234–235

Desferrioxamine
- iron release by, 135
Diabetes mellitus
- insulin-dependent
- breast-fed vs. formula-fed infants and, 6
Disaccharidases
- parenteral EGF effect on, 248
DNA
- iron-induced oxidative damage of, 124–125
- nonprotein-bound iron reactions with, 124–125
- synthesis with administration of EGF, 249–250
Docosahexaenoic acid (DHA)
- accumulation in fetal brain, 51–52
- depletion during pregnancy
 - effect on neonatal DHA values, 49
 - during first month of lactation, 37f
- in LCPUFA-enriched preterm formula and human milk, 37f
- postnatal levels in milk-fed infants, 42
- in preterm formulas, 42–43

E
Early diet
- outcome and
 - in ELBW preterm infant, 171–173

Early enteral feeding
- in Europe and Germany, 242
- at 6 to 12 hours, 243
- tolerance of, 242–243
- in US vs. Europe, 243–244

Early feeding, 236
- Iowa study of, 237–240
 - conclusions of, 240
 - data collected in, 237
 - indomethacin for persistent ductus arteriosus and, 237, 239
 - NEC in, 239
 - route of administration in, 237, 238
 - safety of, 239
- terminology for, 236

Early growth
- head circumference and, 57–59, 58f, 58t
- protein intake and, 57

Early growth and later development
- nutritional intervention trials in U.K., 20–32
- comparison of donor milk and preterm and term formulas, 20, 21f
- hypothesis: weight at 9 months as marker for IQ at 8 years, 20, 31–32
- infants excluded, 28–29
- neonatal weight gain and performance scores in, 22, 23–25
Early growth and later development, nutritional intervention trials in U.K. (contd.)
postnatal growth and cognitive performance in, 25–26, 27
preterm formula groups, 29
TPN and, 30
WISC evaluation in, 31
Early growth failure. See also Catch-up growth of LBW infants
catch-up growth and, 59–61
prevention and reduction of, 61–63
study of aggressive vs. standard nutritional management in, 61–62
amino acid intake and, 55–56, 56t
protein and energy intakes in, 55t, 64–65
Early hypocaloric feeding, 236. See also Early feeding
aggressive vs. rational approach to, 68
importance in LBW infants, 53–55, 54f
EFAs. See Essential fatty acids (EFAs)
Efficacy
of human milk fortification, 91–92
of nutritional intervention in VLBW infants, 11
EGF. See Epidermal growth factor (EGF)
ELBW. See Extremely low-birthweight (ELBW) infants
Electrolyte supplementation, 226, 229
oral and parenteral, 229
Encephalopathy
hypoxic/ischemic
nonprotein-bound iron and, 129
Energy
in human milk fortification, 87, 87t, 90–91
Energy intake
for catch-up growth, 59–60, 60t
in ELBW infants, 177, 225, 226–227
in human milk fortification, 87t
for lean body mass preservation, 65–66
prescribed vs. achieved, 228
for prevention of early growth failure, 55t,
64–65
in study of actual and growth of ELBW infants
deficit in, 225, 226
goals for, 226–227
Energy supply
for ELBW preterm infants, 157f
ENS. See Enteric nervous system (ENS)
Enteral feeding. See also Early enteral feeding:
Feeding
in asphyxiated newborns, 207
catch-up growth and, 59–61
in ELBW infants, 139
of ELBW infants, 165
of gut motility and maturation of, 215–216
historical perspective on, 200
human milk vs. formula, 200–203
intermittent infusion vs. bolus, 217, 218, 229
NEC and, 199
terminology for, 236
vascular responses to, 209–210

Enteric nervous system (ENS)
function of, 211
Enterobacteria
in gut, 182
in stool
breast-fed vs. formula-fed infants 181f,
181–182
Entero-mammary immune system
infant-mother contact and, 202
Entero-mammary response
importance of, 101
infant-mother contact and, 101
promotion of, 101, 102
Epidermal growth factor (EGF)
effect on intestine, 195
in formula
preservation of, 253–255
in GI tract
in human fetus, newborn and child, 246
during perinatal development, 246–247
rodent studies, 246
milk-borne and gut development, 245–250
in milks, 247
orogastric administration of
DNA synthesis and, 249–250
effects on GI tract, 248–250
liver function and, 250
parenteral administration of
effects on GI tract, 247–248
in pre- vs. full-term maternal milk, 254
Erythromycin
intragastric
initiation of migrating activity with, 216
Erythropoietin, transferrin iron loading and, 130, 133, 135
Essential fatty acids (EFAs)
human placental transfer of, 33–36
plasma phospholipid concentrations of
in LCPUFA-enriched and conventional formulas and human milk, 41f, 41–42
Extremely low birthweight (ELBW) infants
early feeding of
constipation with, 244
energy intake in, 177
deficit in, 225, 226
goals for, 226–227
fluid intake in
actual and growth, 223, 224t
nitrogen balance and protein source for, 139–153
nutrient intakes in
interventions in, 226–227
study of actual and growth, 221–228
weight gain and, 223, 224, 225, 226
nutrient requirements for, 221
protein intake in
 deficient, 225, 226
 goals for, 227

F
Fat
absorption of
 with fortified vs. partially supplemented
 human milk, 98–99
phosphorus and, 104
Fecal flora
 in breast-fed vs. formula-fed infants, 181f,
 181–182
Fed response
 in term infant, 212, 213f
Feeding. See also
 Early enteral feeding; Early
 feeding; Enteral feeding
 early
 Iowa study of, 237–240
 effects on motor activity, 216
 gut colonization and, 203
 gut motility and, 211–220
 motor responses in preterm infant
 composition of feed and, 215–216
 rate of feeding and, 213–214, 219
 volume of feed and, 215, 216–217
 strategies in
 for NEC prevention, 203–205
 nutrient-motor interrelationship in, 216–217
Fenton reaction, 124, 125
Ferritin, 122
 iron binding by, 125
Ferritin iron
 in babies of diabetic mothers, 136
 release of, 135
Fluid intake
 in study of actual and growth of ELBW
 infants, 223, 224f
Fluid restriction, 231
 for bronchopulmonary dysplasia prevention,
 230–231
Formula(s), 140
 comparison of term, preterm, and breast milk, 13–14
 comparison of term with preterm, 230
 fortified
 gastric emptying and, 106
 metabolic balance studies of, 140, 141f
 in nutritional programming trials
 pre- and full-term, 8, 13–14, 16
 supplementation of
 with nucleotides and oligosaccharides, 203
Fortified human milk. See also Human milk
 fortification
 bone mineralization with, 98
 cognitive performance at 8 years and, 100
 fat absorption with, 98–99
 feeding tolerance with, 99–100
 growth with, 97–98, 99
 nonnutritional outcomes with, 99–101
 visual function and, 100
 vs. fortified formula
 gastric emptying and, 106
 weight gain with, 97–98
Free radicals
 in NEC, 197
 in reactive oxygen species pool, 122
G
Gas exchange
 IL infusion and, 73–74
Gastric emptying
effect on
 of abnormal physiological conditions, 219
 of cisapride, 218
 of erythromycin, 216
 of feeding position, 218
 with fortified human milk and formula, 100, 106
 osmolality and, 207
Gastric residuals
 Iowa study of, 237, 238–239, 239f, 240
Gastrointestinal priming, 236
Gastrointestinal tract
 EGF in
 during perinatal development, 246–247
Gender
 body fatness and, 17–18
 cognitive performance and
 early nutrition and, 19, 25, 26–27
 neonatal weight gain and, 24–25
 nutritional programming outcomes and
 trials on LBW preterm infants, 15–16
 and outcomes of early nutritional
 intervention, 15–16
 weight gain and
 composition of, 17–18
Glucocysteine
 light effect on, 67
Glucose metabolism
 lifetime changes in
 pre- and postnatal nutrition and, 4–5
Glucose transporters
 protein metabolism and, 163
Glutamine supplementation, 67
 in ELBW infant formulas, 147
Gluthathione, 108, 108f
Glutathione peroxidase (GP), 107–108, 108f
 maternal corticosteroid induction of, 118
 Glutathione reductase (GR), 108, 108f
Glycoconjugates
in human milk, 183–184, 184r
Glycosylation
in nutritional regulation, 183–184
short-chain fatty acid regulation of, 188
GP. See Glutathione peroxidase (GP)
GR. See Glutathione reductase (GR)
Growth. See also Catch-up growth; Early growth; Early growth failure
arachidonic acid depletion and, 50
early diet and
in ELBW preterm infants, 171
of ELBW and VLBW infants
continuity of intra- and extrauterine, 156–157, 158r–159r
intrauterine model for, 156
with fortified vs. partially supplemented human milk, 97–98, 99
of intestinal mucosa, 245
postnatal and later cognitive outcome, 25–26, 26r
0 to 43 weeks gestational age in LBW infants, 53–54, 54f, 58f
of VLBW infants
aggressive nutrition regimen and, 227
Growth factors
from bovine colostrum, 255
developmental studies of, 254
interaction of
in breast milk, 254
Growth failure
prescribed vs. achieved nutrient intake and, 228
Growth hormones
heat treatment of
effect on, 255
Gut
immature
bacterial colonization of, 182–183, 184
protective nutrients for, 182–184, 183r
Gut atrophy
with delayed feeding regimens, 235, 235r
prevention of, 233
Gut colonization
feeding and, 203
Gut emptying
effect on
of drugs, 216, 218
Gut microflora
establishment of
feeding and, 180–182
local environment and, 180–181
health effects of, 179–180, 180f
necrotizing enterocolitis and, 189–191
prebiotics and, 184–185
probiotics and, 184, 185, 185r
Gut motility
effect on
of breast milk vs. formula, 219
of drugs, 217, 218
of inflammatory cytokines, 218
fed response and, 212, 213r
interdigestive cycle in, 212, 212r, 213
intermittent vs. continuous feeding and, 218
maturation of
enteral feeding and, 215–216
enteral nutrient volume and, 215
gastrointestinal peptides and, 215
migrating motor complex in, 212, 212r
motor function in
preterm vs. term infant and adult and, 212–213
patterns in adult, 211–212
relationship of nutrients and motor function in, 211–212
sedation and, 209

H
Head circumference
neurodevelopment and, 66
post term, and cognitive performance, 26, 30–31
relationship to early growth, 57–59, 58f, 58r
Heat treatment
protein absorption and, 140, 152
effect on growth hormones, 255
Histidine
plasma
with whey-hydrolyzed formulas, 147
HMP. See Human milk protein (HMP)
Hormones
in programming windows, 3
Host defense system
fortified vs. supplemented human milk and, 100, 101
human milk enhancement of, 96, 100, 101
Human milk. See also Maternal milk
antinfective agents in, 183
cells in, 202–203
components of
immunologic, 183
nonimmunologic, 183
composition of
gestational age at delivery and, 92–93
cytomegalovirus transmission via, 106
effect on
of pasteurization and freezing, 195–196
fortified
nonnutritional outcomes with, 99–101
fortified vs. partially supplemented
bone mineralization and, 98
fat absorption and, 98–99
growth rate and, 99
nutrition status with, 97–98
weight gain and, 97–99
host defense enhancement with, 96
infrared analysis of, 84, 85f, 88, 90, 91
NEC-protective role of, 96
nucleotides in, 196–197, 202
nutrient content of
estimation of, 222–223
oligosaccharides in, 202
preterm
efficiency of, 152
preterm vs. term
host defense needs and, 183
protective against infection, 105
protective functions of cellular, 202–203
protein content of
preterm and term, 167–168
secretory IgA in, 202
unfortified, 95–97
nutrient availability in, 97
nutrient deficiency in, 97
vs. bovine whey proteins and protein needs, 167
Human Milk Bank Association of North America
bacteriologic surveillance policy of, 105
Human milk formula
components of, 81
fortifiers of, 82, 83f, 84
commercial, 83f
liquid vs. powdered, 82, 84
viral safety of, 93
Human milk fortification, 81–94. See also Fortified human milk
with bovine milk protein, 86
components in, 90, 97–99
with cow’s milk, 82, 83f, 84
efficacy of, 91–92
with human milk protein, 90
immunologic components in, 90
osmolality of milk and, 91
protein:energy ratio in, 87, 87r, 90–91
rationale for, 87–88
safety of, 91, 92
variable vs. fixed regimens for, 86f, 86–87, 87r, 88
vitamins in, 90
Human milk fortifiers, 97
comparison of selected, 99, 99f
Human milk protein (HMP)
vs. bovine milk protein-based fortifier in fixed vs. variable regimens, 86f, 86–87, 87r
Human milk protein (HMP) concentrate
for human milk supplementation, 81, 82f/HWF. See Hydrolyzed-whey formula (HWF)
Hydrolyzed formula
gastric emptying and, 244
in Germany vs. US, 243, 244
Hydrolyzed-whey formula (HWF). See also Whey-hydrolyzed formula (WHF)
nitrogen balance and, 140, 142f–143f, 143, 144f
nitrogen utilization and, 143–145
Hyperglycemia
in VLBW infants
amino acid administration for, 165–166
I
IgA/IgG supplementation, 206
in formula and pasteurized milk, 203–204, 204r
IgF1
endogenous production in preterm babies, 152–153
Indomethacin
in ELBW infants, 176
feedings and, 237, 239
minimal enteral feeding and, 243
Infant feeding
scientific basis for, 1
Infection
human milk protection vs., 96
Infrared analysis
cost effectiveness issue with, 93
of human milk macronutrients, 84, 85f, 88, 90, 91
vs. reference methods, 84, 85f
Insulin and insulin-like growth factors
amino acid concentration and, 163, 175
Intestinal development
eye feeding and, 165
peptide growth factors in, 245
postnatal, 245
Intestinal mucosa
growth of, 245
Intralipid
comparison with olive oil-based emulsion, 76
intra-arterial thromboses and, 79
Intravenous lipid (IL) emulsions
MCT-containing, 77–78
rate vs. quantity of infusion and in jaundiced VLBW infants, 72–73
Intravenous lipids (ILs)
administration of rate for, 78
single or in combination, 78
adverse effects of, 70–73
on pulmonary function, 70–71, 73–74
available infusion solutions
PUFA in, 76
carnitine and, 78
Intravenous lipids (contd.)
 clearance of, 69–70
 early administration of, 69–79
deated, 70–71
 lung disease and, 70–71
 mortality and, 71
gas exchange and pulmonary vascular resistance and, 73–74
 infusion rates for, 70
 vs. quantity in jaundiced infants, 72–73, 78
 jaundice and, 72–73
 oxidation of, 70
 peroxidation of, 74
 pulmonary vascular deposition of, 73–74
 termination of infusion and, 78
Iron. See also Nonprotein-bound iron (NPBI)
effect on fecal flora, 182
in NEC
 animal models of, 129
 prooxidant role in neonatal disease, 129
Iron deficiency
effects of, 121
Iron dextran
 intravenous
 with erythropoietin, 135
Iron overload
 from blood transfusions, 130
 in neonates, 121
Ischemic heart disease
 iron and, 136–137

Jaundice
 fortified human milk vs. preterm formula, 104–105
 infusion rate vs. quantity of lipid infusions in, 72–73, 78

L
Lactase activity
 in colon
 parenteral EGF and, 248
Lactobacilli
 as probiotic, 185
Lactobacillus casei (GG)
 in neonatal intensive care preterm infants, 204–205
Lactoengineering, 81, 82f
Lactoferrin
 in human milk, 201
 iron binding by, 125
 reduction of morbidity and, 194, 195
LBW. See Low birthweight (LBW) infants
LCPUFA. See Long-chain polyunsaturated fatty acids (LCPUFAs)
Lean body mass
 growth changes in, 158f–159f, 159
 preservation of
 protein and energy intake for, 65–66
Length
 gain in 0 IQ, 29
 increase in 0 to 43 weeks gestational age in
 LBW infants, 53, 54f, 55
 measurements of
 in ELBW preterm infants, 231
Linoleic acid
 in human milk, 36, 37f
Lipid nutrition
 for hyperoxic lung injury, 116–117
Lipid peroxidation
 inhibition of, 126f, 128
 measures of, 133, 134
Lipids
 iron-induced oxidative damage of, 124
 plasma clearance of
 in VLBW infants, 69–70
Long-chain polyunsaturated fatty acids (LCPUFAs)
 dietary
 allergy and, 51
 immunologic phenotypes and, 42, 43f
 NEC and, 50
 enrichment of preterm formulas, 39–44
 intake and gestational age at birth, 51
 placental transfer of, 34–35, 52
 safety of, 11
 sources for preterm infant
 dietary, 36, 37f, 38, 39
 endogenous, 38f, 38–39
 human milk vs. formula, 39
 maternal milk from body stores, 36
Low-birthweight (LBW) infants
 early growth failure and catch-up growth, 59–61
 early nutrition in
 importance of, 53–55, 54f
 nutritional programming outcomes in
 gender and, 15–16
 nutritional programming trials in, 7–11, 15–16
 0 to 43 weeks gestational age
 weight gain in, 53–54, 54f, 55
 sick/hospitalized
 aggressive nutritional management benefit in, 62
 0 to 43 weeks gestational age
 growth of, 53–54, 54f, 58f
 length increase in, 53, 54f, 55
Lung
 lipid deposition in, 73
Lung disease
 early intravenous lipids and, 70–71
Lung function
oleic acid and, 78–79

M
Maillard reaction, heat-treating and, 140, 152
Malnutrition
ELBW infant and, 232
Malondialdehyde (MDA) measure
of lipid peroxidation, 133–134
Maternal milk. See also Human milk
preterm
for ELBW infants, 170
protein content of, 168, 170
MCT emulsions
nitrogen utilization and, 77–78
safety in premature infants, 76–77
Metabolic response
to protein fortification of human milk, 86–87, 90, 92
Migrating motor complex (MMC)
motilin and, 219
in term infant, 212, 212/
Minerals
in human milk fortification, 97
Minimal enteral feeding, 236
below 26 weeks’ gestation, 242
corecept of, 208
effect of, 165
MMC. See Migrating motor complex (MMC)
Motilin
migrating motor complex and, 219
Motor function
effect on feeding, 216
Mydriatics
gut motility and, 216, 219–220

N
NEC. See Necrotizing enterocolitis (NEC)
Necrotizing enterocolitis (NEC)
bacterial enteropathogens in, 190, 191/
bacterial translocation and, 189–190
defined, 199
delayed feeding and, 233–234
diagnosis of, 208
enteral feeding and, 106, 175
etiology and physiology of, 199
fortified vs. supplemented human milk and,
100–101, 104
gut ischemia and, 209
gut microflora and, 189–191
human milk and, 14–15
human milk protection vs., 96
human milk vs. formula and, 200–203
in human milk vs. formula-fed infants, 95–96
incidence of
in absence of enteral feeding, 207
Europe vs. US, 243
indomethacin in persistent ductus arteriosus
and, 209
osmolality of feed and, 206
in parenterally fed vs. formula-fed infants,
209
pathogenesis of, 196
gut colonization in, 203
prediction of infant at risk for, 243
preterm formula with/without LCPUFA
enrichment and, 50–51
prevention of, 191–192
relationship with gestational age and
birthweight, 201, 201/
risk factors for, 195, 199, 201
milk-based formulas, 243
NEFAs. See Nonesterified fatty acids (NEFAs)
Neurodevelopment
body mass index and, 30
carly diet and
in ELBW preterm infants, 171–173, 172/
176
gender effect on, 15
in ELBW preterm infants
major impairment, 171–172
minor impairment, 172–173, 176
head circumference and, 66
post early nutritional intervention, 8–9
in premature infant
human milk, 100
protein intake and, 57
Nitrogen
absorption of, 140–143
apparent rate of, 140
factors affecting, 140
relationship with protein efficacy and body
weight, 143, 144/
utilization of, 143–145
Nitrogen balance, 142f–143/
with fortified human milk, 104
of LBW infant
on glucose vs. glucose and amino acids,
55r, 55–56
MCT emulsion effect on, 77–78
Nonesterified fatty acids (NEFAs)
in maternal and cord plasma, 34, 36f
in mothers and full term infants, 34, 35f
placental transfer of, 34, 35r, 36f
Nonprotein-bound iron (NPBI). See also Iron
bleomycin test for, 125, 127, 127/
bronchopulmonary dysplasia and, 130
in cells, 122, 125
in cord blood, 127
in Fenton reaction, 124, 125
ferrous form of, 124
reduced, 122
Nonprotein-bound iron (contd.)
levels of
blood transfusions and, 130
with iron-fortified and noniron-fortified preterm formulas, 130
reactions of
with DNA, 124–125
with lipids, 124
with proteins, 124
NPBI. See Nonprotein-bound iron (NPBI)
Nucleotides
activity and toxicity of in gut, 196–197
in immune function enhancement, 202
reduction of morbidity and, 194, 195
supplemental in formula, 203
Nutrient intakes
dietician vs. neonatologist determination of, 232
study of actual and growth of ELBW infants, 221–228
comparison of infant characteristics in, 222, 222
data calculation in, 223
by feeding period and intervals, 223, 223
results, 224–225
weight gain and, 223, 224r, 225, 226
in study of actual and growth of ELBW infants
interventions in, 226–227
Nutrient requirements
for ELBW infants, 221
Nutrients
in gut lumen
effect on motility, 211
intraluminal
interrelation with motor function, 216–217
Nutrition
health outcomes and, 1
Nutritional programming
in animals, 5–5
hormonal signaling in, 3
in humans, 5–6
epidemiological studies, 5–6
interventional approach to, 6–7
lifetime effects of, 3–5
trials on LBW preterm infants, 7–11
bone mineralization and, 9–10
donor and maternal milk in, 8
gender differences in outcomes, 15–16
implications of, 11–12
milk and formulas in, 8
neurodevelopmental outcome in, 8–9
programming mechanisms in, 10
safety and, 10–11
windows in, 7
Nutritional research
outcomes emphasis in, 2
O
Oleic acid
lung function and, 78–79
Oligosaccharides
effect on bifidobacteria, 182, 185
in human colostrum, 202
in human milk, 183–184, 184r, 201, 202
supplemental in formula, 203
Opioids
gut motility and, 216
Osmolality
of electrolyte supplements, 229
of feed
NEC and, 206
of fortified human milk, 91
NEC and, 206, 207
of fortified vs. unfortified human milk
NEC and, 207
of fresh vs. pasteurized milk, 91
gastric emptying and, 207
Osteocalcin, 9–10, 14
data in nutritional intervention trials, 14
Outcomes
ey early diet and
in ELBW preterm infants, 171–173
ey early life processes and, 2–3
nutritional research and, 2
programming concept and, 2–3
Overfeeding
adult obesity and, 4
cholesterol level and, 6
Oxidation
of intravenous lipids, 70
Oxidative damage
iron-induced
clinical evidence for, 129
interactions of diet and treatments for, 129–131
mechanism of, 124–125
protection against, 125, 126f, 127, 127f
Oxidative stress
preterm formula LCPUFA content and, 43–44
Oxygen partial pressure
relationship to oxygen consumption, 120
Oxygen toxicity, 107–110
bronchopulmonary dysplasia and, 112
newborn and, 110–113
oxygen free radical theory of, 108–109, 109f
pulmonary
antioxidant enzyme protection from, 109–110
undernutrition and bronchopulmonary dysplasia, 115–117
P
PAF. See Platelet-activating factor (PAF)
Parenteral feeding
adverse effects of, 235
Pasteurization
effect on human milk, 195–196
of human milk
virus kill and, 93
Pentane
 breath
 from lipids in TPN, 133
Peptide hormones
 in premature babies with NEC, 208
Peroxidation
 intravenous lipid effects on, 74
 of intravenous lipids, 74, 76–77
 markers for, 134
 multivitamin preparation effect on, 74
 with soybean oil emulsion, 76
Peroxynitrite
 free iron and, 130
Persistent ductus arteriosus
 fluid restriction and, 231
pH
 effect on fecal flora, 182
Phosphorus
 in human milk fortification, 97
 relationship to fat absorption, 104
 supplemental with calcium, 231
 in human milk formula, 81
Placental transfer
 of EFAs, 33–36
 of LCPUFAs, 34–35, 52
 of NEFAs, 34, 35ts, 36ts
 of PUFA, 34
Platelet-activating factor (PAF)
 in NEC pathogenesis, 202
Polyunsaturated fatty acids (PUFAs)
 free radical trapping and, 119
 human placental transfer of, 34
 in LCPUFA-enriched preterm formula and
 human milk, 40ts
 in lipid infusion solutions, 76
Prebiotics
 definition of, 185
 in gut microflora, 184–185
 stimulation of bifidobacteria and, 185
Preterm formula
 comparison of iron-fortified and noniron-
 fortified, 130
 LCPUFA supplementation of, 39–40
 study of LCPUFA-enriched vs. human milk,
 40ts
 arachidonic acid in, 42–43
 DHA in, 42–43
 NEC and, 50–51
 PUFAs in, 40ts
 visual function and, 44–47
Probiotics
 definition of, 185
 safety of preterm, 194
Programming. See also Nutritional programming
 critical windows in, 3
 outcomes and, 2–3
Prostacyclin
 production of
 intravenous lipid effect on, 74
Protein
 absorption of
 from heat-treated formulas, 152
 bacterial fermentation of, 186
 digestibility in hydrolyzed formulas, 150
 effect on fecal flora, 182
 in ELBW infants, 157, 157fs
 in human milk
 analysis of, 80, 84, 85fs, 88, 91, 92
 in human milk fortification, 97
 non-protein nitrogen and, 143
 parathyroid-related, 255
 toxicity of
 biochemical immaturity of preterm infant
 and, 166
 utilization
 in ELBW infants, 143
 with human milk fortifiers, 143
 nitrogen and, 143–145
 with whey-predominant formula, 143
Protein-energy interaction, 161fs, 160–162, 177
Protein gain
 defined, 159
 efficiency of, 159–160
 of ELBW infants, 157, 157fs–159fs
 energy intake and, 160
 metabolic cost of, 161–162
 nitrogen balance determination of, 159
 relationship to protein intake, 159, 176
Protein intake
 actual and growth of ELBW preterm infants
 deficit in, 225, 226
 goal for, 227
 adequacy of
 determination of, 166–167
 amino acid profile for, 167
 available foods and, 167–168, 170
 for catch-up growth, 59–60, 60ts
 coefficient of protein utilization and, 167
 in human milk fortification, 87ts
 for lean body mass preservation, 65–66
 needs for catch-up growth, 67–68
 neurodevelopment and, 57
 prescribed vs. achieved, 228
 of preterm infants, 230
 for prevention of early growth failure, 55ts,
 64–65
 recommended
 during postnatal transition, 169ts
 during stable growth, 168ts, 175
 serum biochemical indices of, 166
 weight and protein gain rates approximating n
 utero growth, 166–167
Protein metabolism
 of fortified human milk
 serum urea nitrogen monitoring of, 86, 90
Protein requirements
for ELBW preterm infants
hyperglycemia and, 165-166
supply goals for, 155, 227
in sick, nongrowing, VLBW infants, 170-171
in small-for-gestational-age ELBW infants, 171
Protein supplements, 177
Protein synthesis-to-protein gain ratio
in appropriate-for-gestation age premature infants, 164f
Protein turnover
cellular aspects of, 163
clinical relevance of, 162-163
endocrinologic aspects of, 163
factors affecting, 163-165
molecular aspects of, 163
nutritional status and, 164
postconceptional age and, 163-164, 164f
ratio of synthesis to gain in, 162
route of feeding and, 165
stable isotope techniques for, 162
Protein utilization
coefficient of, 159-160, 167
factors affecting, 160
PUFAs. See Polyunsaturated fatty acids (PUFAs)
Pulmonary function
intravenous lipid effects on, 73-74
Pulmonary vascular resistance
intravenous lipids and, 73, 76
early administration of, 73-74
R Reactive oxygen species (ROS), 107
cytotoxic mechanisms of, 107
defenses against, 107-108
oxygen conversion to, 122
pathogenetic in newborn, 122
Reactive oxygen species (ROS) pool
balance in, 124
input to, 122-123
output from, 123
sink model of, 122, 123f
Renal function
protein therapy and, 65
Respiratory distress syndrome neonatal
non-protein bound iron and, 129
ROS. See Reactive oxygen species (ROS)
S Saccharolytic bacteria, 186
Safety
of early feeding
Iowa study and, 239
of LCPUFA administration, 40
of milk fortification regimen, 91, 92
of nutritional intervention
in VLBW infants, 11-12
Safflower oil-based diet
in prevention of hyperoxic lung injury, 116-117, 119
SCFA. See Short-chain fatty acids (SCFAs)
Secretory IgA
in human colostrum and milk, 202
importance of, 195
Secretory IgA/IgG
in human milk
gastrointestinal tract-protective, 96
Sepsis
human milk feeding and socioeconomic factors in, 105
SGA. See Small-for-gestational age (SGA)
Short-chain fatty acids (SCFAs)
antibacterial effect of, 188
Bacteroides and, 188
effects of
on carbohydrate and lipid metabolism, 189
on colonic epithelial cell transport, 187-188
in energy supply, 187
as enteroocyte substrate, 188
in modulation of nucleic acid, 188
physiological role of, 186, 187-189
principal, 186, 187
production of, 186
Small-for-gestational-age (SGA) infant
vs. appropriate-for-gestational-age infants
protein requirement for, 171
SOD. See Superoxide dismutase (SOD)
Sodium intake
with fortified human milk vs. preterm formula, 104
Starvation
effect on gut, 235f
Steroids
antenatal
gut motility and, 216
prenatal
necrotizing enterocolitis and, 194
Superoxide dismutase (SOD), 107, 108f
activity in lung
mid-gestation to term, 112, 112f
exogenous administration of, 114
maternal corticosteroid induction of, 118
Surfactant preparation
as vehicle for antioxidant therapy, 114
T TGFa. See Transforming growth factor-alpha (TGFa)
Threonine
in whey-hydrolyzed formulas, 147, 150, 151
Thromboxane
production of
intravenous lipid effect on, 74

α-Tocopherol
plasma concentration of
with human milk and LCPUFA-enriched
and conventional preterm formulas, 43, 44f
in preterm infants, 40

Transferrin, 123f
antioxidant capacity of, 125, 126f
centration in cord blood plasma, 127, 128
iron-binding capacity of, 130–131

Transferrin iron
binding and release of, 134–135

Transferrin levels
in babies with/without chronic lung disease, 133
blood transfusions and, 130

Transferrin receptors, 134

Transforming growth factor-alpha (TGFα), 4
in GI tract
in human fetus, newborn and child, 246–247
in milks, 247

Triglycerides
clearance of, 69
hydrolysis of, 69

Trophiic feeding
Canadian multicenter trial on, 242

Trophiic feeds, 235–236
studies of, 236, 236f

Tryptophan
plasma
with whey-hydrolyzed formulas, 147

U

Undernutrition
brain development and, 4
CNS growth and development and, 57
combined with hyperoxia
effects of, 116, 116f
consequences in premature VLBW newborn, 115f, 115–116
delayed vs. trophic feeding and, 233
early
consequences of, 55–59
lifetime effects of, 4–5
nitrogen balance and, 55–57

Urea nitrogen
in human milk and formula, 151
monitoring of
for protein metabolism, 86, 90

V

Vascular studies
of normal vs. underweight babies, 14

Very low birthweight (VLBW) infants
aggressive nutrition and growth of, 227
amino acid supply in
qualitative aspects of, 66–67
growth of
aggressive nutrition regimen and, 227
continuity of intra- and extrauterine, 156–157, 158f–159f
hyperglycemia in
amino acid administration for, 165–166
jaundiced
intravenous lipid infusion in, 72–73
nutritional intervention in
efficacy, 11
safety of, 11–12
plasma lipid clearance in, 69–70
sick, nongrowing
protein requirements for, 170–171
undernutrition in
consequences of, 115f, 115–116

Visual acuity
age at testing, 45f, 46f, 49
transient visual evoked potential testing of, 45, 45f, 46f, 47

Visual function
DHA supply and development of, 44–47
transient visual evoked potential testing of, 45, 45f, 46f, 47

Vitamin C, 108, 108f
antagonism of ceruloplasmin ferroxidase
activity, 125, 126f
ceruloplasmin interaction with, 136
and iron-induced peroxidation, 134
pro- and antioxidant effects of, 128, 130

Vitamin E (α-tocopherol), 108, 108f
in formula, 52
supplementation in LCPUFA-enriched
preterm formula, 43–44, 52

Vitamins
in human milk fortificatin, 90

W

Wechsler Intelligence Scale-Children (WISC)
in early growth and later development
studies, 31

Weight gain
composition of
gender and, 17–18
in ELBW preterm infants
nutrient intake and, 223, 224f, 225, 226f
with fortified human milk
vs. partially supplemented, 97–99
vs. preterm formula and, 104
neonatal
categories and characteristics of infants, 22f
Weight gain, neonatal (contd.)
cognitive performance at 8 years, 23
factors associated with, 22
and later weight, 22–23
O to 43 weeks gestational age in LBW infants, 53–54, 54f, 55
protein and energy intakes predicted for, 60t, 60–61
with protein and energy supplementation of human milk, 197
with protein-fortified human milk
fixed vs. variable regimens, 87
Weight loss
decrease in
with positive nitrogen balance, 56–57
extracellular water component of, 68

Whey-hydrolyzed formula (WHF)
amino acid content and bioavailability of technologic processes and, 147
nitrogen absorption and retention efficiency with, 151–152
threonine content of, 147, 150
Whey-predominant formula (WPF)
comparison of acidic with enzymatic for amino acid content, 147
nitrogen absorption and, 140, 142f–143f, 143, 144f
nitrogen utilization and, 143–145
Whey proteins
hydrolysis of human, 140
WHF. See Whey-hydrolyzed formula (WHF)
WPF. See Whey-predominant formula (WPF)