Subject Index

A
Activin
activity of, 66–67
immunoreactivity of, 66
Adipose tissue
lipolytic activity of
fetal benefit from, 171
maternal benefit from, 170, 171
maternal metabolism and, 169–171
Alanine, uptake in smokers vs.
nonsmokers, 248
Alcohol abuse
fetal alcohol syndrome from, 240
placental transport effect on nutrient
transport in, 236
reduction of amino acid transport with,
151
Alkaline phosphatase, role of, 70
Amino acid(s)
branched-chain
in intrauterine growth retardation,
150
placental utilization of, 23–24
D- and L-amino acid
placental transfer of, 186–187, 190
fetal arterial plasma concentrations,
disposal, and clearances of, 53,
53t
in fetal blood
comparison in intrauterine growth
retardation and appropriate-for-
gestational-age, 194–195
fetal hepatic vs. umbilical circulations,
48–49, 49f
intrauterine growth retardation and,
194–195, 212
isoleucine
placental utilization of, 23
umbilical venous plasma
concentration of
in IUGR fetuses, 194
uptake of, uterine vs. umbilical, 22
loss through villi, 17
metabolism of, 48–49
placental delivery of, 21–30
serine
conversion to glycine, 24–25
fetal fluxes of, 51, 51f, 52
uptake of
comparison of uterine and umbilical,
21–22
fetal liver-placental interorgan
transport, 48–49
utilization and production of vs.
transport, 21–30
Amino acid transport, 47–48, 147–151
in diabetic pregnancy, 216–217
fetal liver-placental system exchange
in, 47–48
in intrauterine growth retardation, 149
in normal pregnancy, 216
by passive transfer vs. transporter
facilitation, 186–187
systems in, 148t
basal membrane, 148
coordination of, 148
in fetal liver-placenta interaction,
47–48
microvillus, 148
Amino acid transporter(s)
classification of, 149
in fetal growth, 144
glutamate, 149
glutamine, 149
location of, 144
molecular biology of, 154
physiologic studies of, 149
study techniques for
cordocentesis, 150
microvillus, 150
Amino acid transport systems, 148, 148t
system A, 28–29, 148, 148t, 155
system L, 148, 154
system N, 148, 148t
Amphetamine abuse
effect of
on adult behavior, 239
on fetal growth, 239

NOTE: f following page numbers indicates figures; t indicates tables.
Amphetamine abuse (contd.)
placental transport effect on nutrient transport in, 236

B Birth weight, fatty acids relationship with, 162 Brain, fetal, lipid requirements of, 161 Branched-chain amino acid(s) alanine relationship with, 138–139 deamination of, 23 in intraterine growth retardation, 150–151 leucine, 23 umbilical venous plasma concentration in intraterine growth retarded fetuses, 194 valine, 23

C Cadmium 5 binding to placenta, 249 content in nonsmokers, 249 interface with zinc metabolism, 248 Cannabis. See Marijuana (cannabis) abuse Carcass analysis fall in fetal chloride content, 4, 4f of placental transfer of chloride, 2t, 4–5 Carnitine palmitoyltransferase-1 (CPT-1) gene expression during perinatal period, 109–110 changes in, 110, 111f regulation of, 112f, 112–113 Carnitine palmitoyltransferase-2 (CPT-2) gene expression during perinatal period regulation of, 113–114 Carnitine palmitoyltransferase (CPT) system activity of, 108–109, 109f Chloride placental transport of, 4–20 role of, 3 uptake into microvillous membrane vesicles, 9, 9f Chloride transport channels, 10, 11t, 18 carcass analysis of, 2t, 4f, 4–5 comparison of first trimester and term, 18–19 cystic fibrosis transmembrane conductance regulator in, 10, 11t, 18 cytotrophoblast cells, 3t, 10 driving forces for, 5t implications of, 14 intact individual villi, 2t, 10 mechanisms of, 10–12, 12f–13f molecular studies of, 3t, 10–11, 11t paracellular pathway in, 14, 20 perfused human placenta in, 3t, 11–13, 13f research in, 19 study techniques for, 4–20 discussion of, 17–20 utilization of, 14–15 transplacental vs. paracellular, 12–13 vesicle studies of, 3t, 8–9, 9f in vivo unidirectional fluxes in, 2t, 5–7, 7f–8f Chloride transporters, 10–11, 11t DIDS-inhibitable, 9, 13, 20 Cholesterol, in pregnancy, 171–172, 172f Cholesterol ester transfer protein (CEPT) activity of, 172 Choline phosphoglyceride long-chain polyunsaturated fatty acid, in fetal growth, 162 Cigarettes. See Tobacco smoking
Cocaine abuse
effect on intrauterine growth, 151, 238–239
nutrient transfer and
impairment of, 238
vs. tobacco smoking, 238–239
Conductance, in chloride transport, 10, 11t, 18
Corticotrophin releasing binding protein (CRH-BP), 66
Corticotrophin releasing hormone (CRH), activity of, 66
Cyclic adenosine monophosphate (c-AMP)
effects of
on carnitine palmitoyltransferase (CPT) 1 and 2 gene hepatic expression, 113–114
on HMG-CoA hepatic gene expression, 114
Cysteine-methionine metabolism, 155
Cystic fibrosis, transport defect in placental tissues, 18
Cystic fibrosis transmembrane conductance regulator (CFTR), in chloride transport, 10, 11t, 18
Cystine aminopeptidase, role of, 70
Cytokines, 69, 70f
Cytotrophoblast cells, 70, 71
chloride currents in, 10, 11t, 12f
in chloride transport, 3t, 10

D
Diabetic rats
first-generation offspring of
insulin resistance in, 219–220
glucose homeostasis and
in first generation offspring, 222
in second generation offspring, 222–223
in third generation offspring, 223t, 223–224
second-generation pregnant offspring of
glucose intolerance in, 222–223
third-generation offspring of
hyperglycemia, hyperinsulinemia, macrosomia, hyperplasia in, 223
Docosahexaenoic acid (DHA)
in brain
diet and, 165–166
in fetal membrane formation, 162–163
synthesis of, 159
Drug abuse
identification and incidence of,
231–232, 234t–235t
placental transport effect on nutrient transport in, 233

E
Eicosanoids, in fetal development, 159
Endocrine function
of cytokines, 69
of enzymes, 69–70
of growth factors, 69
of neuropeptides, 64–69
of polypeptide hormones, 62–64
of steroid hormones, 59–62
trophic peptide-hormone interactions, 59–74
Endothelin
action of, 68, 68f
description of, 68
interactions of, 70f
in progesterone release, 73
Enzymes
controlling fatty acid oxidation and ketogenesis
regulation of expression of, 107–114
endocrine function of, 69–70
Epidermal growth factor (EGF) receptor,
in trophoblast cell regulation, 37
Epidermal growth factors (EGFs), in progesterone release, 73
Essential fatty acids
availability from maternal circulation
fetal benefits from, 171
effect on fetal lipid metabolism, 157
fetal requirements for, 161
head circumferences and, 167
in maternal hypertriglyceridemia, 174
Estrogens
estradiol, 62
estriol, 62
in maternal hyperlipidemia, 173
production of, 62
role of, 62
Ethoxyresorufin-O, de-ethylase (EROD), activity and smoking exposure, 247–248

F
Fatty acid oxidation
expression of enzymes controlling, 107–114
Fatty acid oxidation (contd.)
neonatal hepatic
hormonal and nutrient control of, 111–114
Fatty acids
accretion of
in liver, 160
in spinal column, 160
effects of
on carnitine palmitoyltransferase
(CPT) 1 and 2 gene hepatic
expression, 112f, 112–113
liver gene expression and, 118–119
peroxisome proliferator-activator
protein and, 119
Fetal alcohol syndrome
description of, 240
effects of, 240
Fetal growth retardation. See Intrauterine
growth retardation (IUGR)
Fetal liver-placental system interaction,
47–57
amino acid in
net uptake or release of, 48–49
transport and metabolism of, 47–48
glutamate exchange in, 52–53, 53t, 54,
54f
glutamine exchange in, 52, 53
serine-glycine exchange in, 49–52
Fick principle, in placental amino acid
metabolism, 21–22
First trimester, chloride transport in,
18–19
Flux(es). See Amino acid(s); Chloride;
Glucose
Follistatin (follicle stimulating hormone
suppressing protein), activity of, 68
Food restriction, insulin levels and
sensitivity with, 220–222, 222f
Free fatty acid, in adipose tissue lipolysis
and effects, 170–171
Genomic imprinting, trophoblast cell
development and, 33–34
Gestation. See First trimester; Pregnancy;
Third trimester
Gestational hypertension. See
Hypertension
Glucogenesis, premature, with maternal
malnutrition, 218
Glucose
bidirectional flux of, 145, 147
gene expression activation by, 120–121
high-carbohydrate diet replacement of
in weanling rat, 219
high-fat diet replacement of
in neonatal rat, 218–219
intrauterine growth retardation and, 212
maternal-fetal gradient in normal
intrauterine growth-restricted
pregnancies, 192, 192f, 193f
plasma concentrations of
in offspring of diabetic and food-
restricted rats, 219f
in pregnant offspring and third
generation fetuses, 233–234
relationship of transplacental to
umbilical glucose/oxygen quotient,
193, 194f
restriction of
intrauterine growth retardation and,
226–227
umbilical venous-maternal arterial
concentrations of, 192, 192f
uptake of
in fetal rat, 218
in placenta of diabetic rats, 105, 106f
Glucose metabolic index, in muscle and
tissue, 220, 221f
Glucose tolerance tests, in pregnancy,
211, 212
Glucose transport
animal models of, 145–146
in diabetic pregnancy, 216
glucose transporters in, 143–144
for growth-retarded fetus, 193
in normal pregnancy, 215–216
schematic representation of, 143, 144f
Glucose transporter(s) (GLUTs)
activity of, 143–144
differences in, 117
expression of, 146
impact of maternal diabetes on,
104–107
regulation of, 103–104, 105f, 146
GLUT-1, insulin upregulation of, 147
GATA factors, in trophoblast cell
regulation, 38–39
Gene expression
regulation by nutrients during perinatal
period, 103–121
carnitine palmitoyltransferase system
in, 108–114
fatty acids in, 118–119
glucose in, 120–121
<table>
<thead>
<tr>
<th>Subject</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT-3, regulation of, hyperglycemia in</td>
<td>106–107, 107f</td>
</tr>
<tr>
<td>under intrauterine growth retardation conditions</td>
<td>144–147</td>
</tr>
<tr>
<td>localization in placenta</td>
<td>117–118, 144</td>
</tr>
<tr>
<td>in nondiabetic rats</td>
<td></td>
</tr>
<tr>
<td>euglycemic-hyperinsulinemia and hyperglycemic-hyperinsulinemia clamp studies</td>
<td>106–107, 108f</td>
</tr>
<tr>
<td>ontogenesis of, placental</td>
<td>104, 105f</td>
</tr>
<tr>
<td>in perinatal period</td>
<td>218, 219</td>
</tr>
<tr>
<td>protein concentration and</td>
<td>118</td>
</tr>
<tr>
<td>Glutamate</td>
<td></td>
</tr>
<tr>
<td>fetal hepatic output of</td>
<td>56–57</td>
</tr>
<tr>
<td>fetal hepatic-placental exchange of</td>
<td>52–53, 53t, 54, 54f</td>
</tr>
<tr>
<td>role of</td>
<td>149</td>
</tr>
<tr>
<td>uptake of</td>
<td>22</td>
</tr>
<tr>
<td>Glutamate transporters</td>
<td>57</td>
</tr>
<tr>
<td>Glutamine</td>
<td></td>
</tr>
<tr>
<td>fetal hepatic-placental exchange of</td>
<td>52, 53, 54</td>
</tr>
<tr>
<td>parturition and steroidogenesis linkage and</td>
<td>56</td>
</tr>
<tr>
<td>role of</td>
<td>149</td>
</tr>
<tr>
<td>Glycerol, adipose tissue lipolysis and effects</td>
<td>170</td>
</tr>
<tr>
<td>Glycine</td>
<td></td>
</tr>
<tr>
<td>formation from serine</td>
<td>24–25</td>
</tr>
<tr>
<td>placental production of</td>
<td>24–25</td>
</tr>
<tr>
<td>Gonadotropin releasing hormone (GnRH) activity of</td>
<td>65–66</td>
</tr>
<tr>
<td>secretion of</td>
<td>65, 65f</td>
</tr>
<tr>
<td>Growth factors</td>
<td>69, 70f</td>
</tr>
<tr>
<td>Growth hormone binding protein (GHBP), messenger RNA encoding of</td>
<td>90</td>
</tr>
<tr>
<td>Growth hormone (GH) binding to receptor</td>
<td>88, 88f</td>
</tr>
<tr>
<td>initiation of signal transduction pathway via</td>
<td>88, 88f</td>
</tr>
<tr>
<td>in intrauterine growth, sheep fetus</td>
<td>99–100</td>
</tr>
<tr>
<td>in stimulation of tyrosine phosphorylation</td>
<td>88, 89</td>
</tr>
<tr>
<td>Growth hormone receptors (GHRs), 88 deficiency of, Laron syndrome</td>
<td>98–99</td>
</tr>
<tr>
<td>fetal, 89–93</td>
<td></td>
</tr>
<tr>
<td>gene transcription in</td>
<td>91f, 91–93, 92f</td>
</tr>
<tr>
<td>messenger RNA encoding of</td>
<td>89–90</td>
</tr>
<tr>
<td>ovine fetal liver</td>
<td>90–91</td>
</tr>
<tr>
<td>Growth hormone releasing hormone (GHRH), activity of</td>
<td>67</td>
</tr>
<tr>
<td>Growth retardation</td>
<td>See Intrauterine growth retardation (IUGR)</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Head circumference</td>
<td></td>
</tr>
<tr>
<td>essential fatty acids and</td>
<td>167</td>
</tr>
<tr>
<td>neonatal, relationship with fatty acids</td>
<td>162</td>
</tr>
<tr>
<td>Heparin, for antiphospholipid antibodies syndrome</td>
<td>208</td>
</tr>
<tr>
<td>Hepatocyte growth factor/scatter factor (HGF/SF), in trophoblast cell regulation</td>
<td>37</td>
</tr>
<tr>
<td>Heroin abuse</td>
<td></td>
</tr>
<tr>
<td>vs. methadone effect on fetal growth and delivery</td>
<td>237–238</td>
</tr>
<tr>
<td>placental transport effect on nutrient transport in</td>
<td>233</td>
</tr>
<tr>
<td>Hexokinase (HK) ontogenesis of, placental</td>
<td>104, 105f</td>
</tr>
<tr>
<td>regulation of expression of</td>
<td>103–104</td>
</tr>
<tr>
<td>High-density lipoproteins (HDLs), in pregnancy</td>
<td>171, 172f, 172–173</td>
</tr>
<tr>
<td>Hormone receptors, development within fetus</td>
<td>85–101</td>
</tr>
<tr>
<td>Hormone(s) neuropeptide</td>
<td>64–69</td>
</tr>
<tr>
<td>polypeptide</td>
<td>62–64</td>
</tr>
<tr>
<td>pulsatile release of</td>
<td>73</td>
</tr>
<tr>
<td>steroid</td>
<td>59–62</td>
</tr>
<tr>
<td>human chorionic gonadotrophin (hCG) biosynthesis of</td>
<td>63</td>
</tr>
<tr>
<td>function of</td>
<td>63</td>
</tr>
<tr>
<td>secretion of</td>
<td>63</td>
</tr>
<tr>
<td>synthesis of</td>
<td>63</td>
</tr>
<tr>
<td>Human growth hormone (hGH) amino acid sequence of</td>
<td>77f</td>
</tr>
<tr>
<td>placental</td>
<td>64, 70f</td>
</tr>
<tr>
<td>Human growth hormone variant (hGH-V), amino acid sequence of</td>
<td>77f</td>
</tr>
<tr>
<td>Human placental growth hormone variant (hPGH-V), 75–83 amino acid sequence of</td>
<td>77f</td>
</tr>
<tr>
<td>biologic function of</td>
<td>78–79</td>
</tr>
<tr>
<td>correlation with insulin-like growth factor-1</td>
<td>82</td>
</tr>
<tr>
<td>discovery of</td>
<td>76</td>
</tr>
</tbody>
</table>
Human placental growth hormone variant (hPGH-V) (contd.)
 future research directions, 79–80
gen genes in, 75–76, 76f
gestational profile of, 78
localization of, 78
structure of
 genes in, 76–77
 protein in, 77, 77f
Human placental lactogen (hPL) (somatomammotrophin)
cross-reactivity of, 82
description of, 63–64
fetal liver binding sites for, 93
 glucose and, 227
 placental weight and levels of, 60, 60f
 secretion of, 63–64
Hydroxymethylglutaryl-coenzyme A (HMG-CoA), in regulation of gene expression during perinatal period, 114
Hydroxymethylglutaryl-coenzyme A (HMG-CoA) synthase
gene expression during perinatal period, 109–110
 changes in, 110, 111f
Hypercholesterolemia, preexisting, fetal protection against, 175–176, 176f
Hyperglycemia
effects of
 on glucose-3 transporter, 118, 121
 on postnatal hepatic metabolism, 119–120
 in regulation of glucose transporter-3, 106–107, 107f, 108f, 118
Hyperinsulinemia/insulin resistance, in intrauterine growth retardation, significance of, 206
Hyperinsulinemia with hypertension (syndrome X)
 impaired gestational glucose tolerance in, 203
 insulin resistance in, 203
 mechanisms in, 205
Hyperlipidemia
deviations in maternal and fetal growth and, 174–176, 175f
 maternal, 171–173
Hyperoxia
 maternal
 adverse effects for fetus, 135
 benefits for fetus, 134–135, 139
Hypertension
 insulinemia-associated
 insulin resistance and, 203
 mechanisms in, 205–206
 with intrauterine growth retardation
definition of, 200
 results with 24-hour diastolic blood pressure evaluation, 201, 201f, 202, 203
 without asymptomatic intrauterine growth retardation, 200, 201f
Hypertriglyceridemia
 maternal
deviations in and fetal growth, 174–176, 175f
 fetal benefits from, 174, 177
 in sucrose-rich diet, 175
Hypoaminoacidemia, reduction in fetal growth, 132, 133, 135
Hypoglycemia, fetal, from maternal hyperinsulinemia, 205–206
Hypoinsulinemia, fetal glucose uptake in, 218
Hypoxemia. See Hypoxia
Hypoxia
effects on fetus
 endocrine, 133–134
 for growth, 129, 129f, 130t, 131–132
 for supply of substrates, 132–133
 fetal
 with marijuana use, 239–240
 hyperoxia for, maternal, 134–135, 139
 maternal
 normobaric, endocrine consequences of, 133–134
 reduction of fetal branched-chain amino acids, 132, 135, 136
I
Illicit drugs, placental transport effect on nutrient transport and, 233–234, 236
Inhibin
 activity of, 66–67, 67f
 immunoreactive and bioactive, 66–67, 70f
Insulin
 action in perinatal period, 218–219
 levels and sensitivity with food restriction, 220–222, 222f
 plasma concentrations
 in offspring of diabetic and food-restricted rats, 219t, 219–220
 in pregnant offspring and third generation fetuses, 233–234
 upregulation of GLUT-1 by, 147
Insulin-like growth factor-binding protein (IGF-BP), for glucose transport, 154

Insulin-like growth factors (IGFs)
action through insulin receptors, 101
as hormonal mediators, 133–134
IGF-2, in trophoblast cell regulation, 33, 34, 37, 43
in intrauterine growth, 100–101

Insulin receptors
in fetal rat, 218
role of, 101

Insulin resistance
in adult offspring of diabetic and food-restricted rats
euglycemic insulinemic clamp studies of, 220
maternal
hyperinsulinemia and hypertension with, 203, 204
in maternal hyperlipidemia, 173

Intrauterine growth retardation (IUGR), 143–155. See also Growth retardation
amino acid transport in, 147–151
animal models of, 215–230
adult offspring of diabetic rats and, 219t, 219–224
fetal endocrine pancreas and, 217
heat stress in maternal ewe, 145–146, 150
insulin action in, 218–219
asymmetric, 145, 165
asymptomatic, 199–203, 20f
branched-chain amino acid transport changes in, 150–151
causes of, 158
classification of clinical severity in, 191–192
etiologic factors in, 199, 200
fetal blood sampling for, 191
fetal endocrine pancreas in, 217
fetomaternal concentration of amino acids and total α-amino nitrogen and, 194–195, 195f
glucose in, 192f, 192–193, 193f, 194f. See also Glucose
restriction of, 226–227
glucose transporters in, 144–147
insulinemia-hypertension association in, 203–206, 204f
long-term consequence of, 215–230

mortality and morbidity risk with, 158–159
nutrient transport and
in diabetic pregnancy, 216–217
in normal pregnancy, 215–216
placental transport in, 143–155

Intrauterine growth-retarded (IUGR) fetuses
reduced endocrine pancreas tissue in, 223, 228

Intrauterine growth-retarded (IUGR) perinates
definition of, 157–158

Intravenous immunoglobulins (IVIG)
for antiphospholipid antibodies syndrome
effect on fetal growth, 206–207, 207f, 208–209

K
Ketogenesis
expression of enzymes controlling, 107–114
neonatal hepatic hormonal control and nutrient control of, 111–114

Ketone bodies
fetal benefits from, 171
hypertriglyceridemia and, 174, 177

L
Laron syndrome (growth hormone receptor deficiency), 98–99

Leucine
disposal of, 195, 196f
fetal oxidation of, 150
in intrauterine growth retardation, 150
maternal heat stress effect on, 150, 155
transplacental transfer of
in appropriate-for-gestational-age and small-for-gestational-age babies, 187
transport of
in intrauterine growth-retarded vs. control animals, 23–24, 27
protein synthesis and, 28, 29
umbilical flow of
in appropriate-for-gestational-age and small-for-gestational-age fetuses, 187
Leucine (contd.)

umbilical venous-maternal arterial plasma concentrations of, 195, 196f
umbilical venous plasma concentration of in intrauterine growth-retarded fetuses, 194
uptake of in appropriate-for-gestational-age fetuses, 185-186
uterine vs. umbilical, 22
utilization of fetal, 23-24, 27, 28, 29 placent al, 23
Linoleic acid, in arachidonic acid synthesis, 159
Linolenic acid, in docosahexaenoic acid synthesis, 159
Lipids. See also specific, e.g. Low-density lipoproteins (LDLs)

M

Macrosomia, maternal diabetes and, 223, 228
Malnutrition fetal hepatic insulin resistance with, 221 maternal fetal endocrine pancreas and, 217 intrauterine growth retardation from, 212, 217, 222 small-for-gestational-age fetuses and, 212 Mannitol, transplacental transfer of, in appropriate-for-gestational-age and small-for-gestational-age babies, 187, 189 Marijuana (cannabis) abuse effect of assessment of neonates, 239-240 on gestation, 239 placental transport effect on nutrient transport in, 236 Mash-2, in trophoblast cell regulation, 38, 43-44

Maternal vascular disease and fetal growth, 199-213

Methadone, placental transport effect on nutrient transport and, 233

Methionine, transport of, 155

Microvillous membrane in chloride transport studies, 2t, 10 transporter systems of, 148 vesicle studies of chloride kinetics in, 8-9, 9f power of, 9

Molecular mechanisms of placental development, 31-45
trophoblast cell in development of, 33-34 lineage of, 31-32, 32t regulatory genes of, 36-39

Molecular studies, of chloride transport, 3t, 10-11
SUBJECT INDEX

N
Neuropeptide(s)
activin, 66–67
corticotrophin releasing hormone, 66
endocrine function of, 69–70
endothelin, 68
folliculostatin, 68
gonadotrophin releasing hormone, 65–66
growth hormone releasing hormone, 67
inhibin, 66–67
interactions of, 70f
placental vs. hypothalamic, 64–65
somatostatin, 67
Neurotransmitters, placental, 69
Nicotine, plasma level of, 247
Nutrient transport
in diabetic pregnancy, 216–217
illicit drug transport effect on, 233–234, 236. See also specific drug, e.g., Cocaine abuse
in normal pregnancy, 215–216
Nutrition, in fetus of substance abusers, 236–240

O
Opiate abuse
effect of
on fetal growth and delivery, 237–238
on placental and nutrient transport, 233
Oxygen
allometric relationship, 139–140
consumption of and protein metabolism, 183–190
in appropriate-for-gestational-age fetuses, 185–186
fetal consumption of, 184–185
body mass in prediction of, 184–185
at elective cesarean delivery, 183–190
role in implantation process, 140–141
Oxygenation in utero
fetal requirements and, 123, 127f, 128–135
placental determinants of factors influencing, 124t, 124–125
ontogenic changes in oxygen transfer and characteristics, 125–126
relation between placental growth and delivery to fetus, 126f, 126–127, 128f
reduction of consequences for fetus, 129, 129f, 130t, 131–134
therapeutic approaches to, 134–135

P
Pancreas, fetal endocrine, intrauterine growth retardation and, 217
Phenylalanine
fetal
reduction in maternal hypoxemia, 132, 135, 136
uptake and disposal in appropriate-for-gestational-age babies, 185–186
transplacental transfer of in appropriate-for-gestational-age and small-for-gestational-age babies, 187
Phospholipids, in pregnancy, 171–172, 172f
Placenta
in amino acid delivery, 21–30
development of molecular mechanisms of, 31–45
insufficiency of in antiphospholipid antibodies syndrome, 207–208
perfused in chloride transport, 2t, 11–13, 13f
size of correlation with fetal liver size, 48f, 447
Placental lactogen (PL)
in activation of JAK2/Stat signal transduction pathway, 95–96
binding sites for fetal liver, 93
function of, 86–87
in growth hormone-growth hormone receptor binding, 88, 88f, 95–96, 100
interaction with growth hormone receptors, 94
modulation of maternal and fetal metabolism by, 87
sites of action of, 86, 86f
structure of, 85–86
study limitations and, 87
Placental lactogen receptor (PLR), 87–88
fetal, 93–96
growth hormone receptor and, 88
Placental lactogen (contd.)
 as growth hormone receptor variant, 94–95, 95f
 structural identity of, 94–95, 95f
Placental transfer, in appropriate-for-gestation-age and small-for-gestation-age fetuses, 186–187
Placental transport
 analysis of, 1–2
 approaches to
 homeostatic, 3, 3t
 orientation maintained, 2t, 3
 orientation not maintained, 3, 3t
 of chloride
 study of, 4–20
in fetal growth retardation, 143–155.
 See also Intrauterine growth retardation (IUGR)
of illicit drugs, 232–233, 236
 effect on nutrient transport, 233–234, 236
 maternofetal vs. transplacental, 1 study techniques for, 1–20
 substance abuse effect on, 151
Polypeptide hormone(s)
 endocrine function of, 62–63
 human chorionic gonadotrophin,
 62–64, 70f
 human growth hormone, 64, 70f
 human placental lactogen, 63–64
 interactions with trophic peptides, 70f
Prednisone therapy, for antiphospholipid antibodies syndrome, 208
Preeclampsia
 in antiphospholipid antibodies syndrome, 206
 with intrauterine growth retardation
 24-hour diastolic blood pressure monitoring results, 201, 201f, 202
 identification of, 200, 201, 202
 normotensive, 213
Pregnancy
 drug abuse in
 fetal nutrition in, 236–240
 identification of, 231–232
 incidence of, 234–235t
 nutrient transport in
 diabetic, 216–217
 normal, 215–216
Pregnenolone
 progesterone and, 61
 in progesterone production, 61
Progesterone
 metabolism of, 61, 61f
 pregnenolone and, 61
 production of, 60f, 60–61
 role of, 59–60
 section of
 modulation of, 66–67, 67f
Protein metabolism and oxygen consumption, 183–190
Protein(s)
 for glucose transporters, 117
 placental
 turnover of, 186
 synthesis of
 amino acid delivery rate and, 187, 190
 transporter, 17
R
Renin, role of, 69–70
S
Serine
 fetal
 fluxes of, 51, 51f, 52
 reduction in maternal hypoxemia, 132, 135, 136
 in glycine formation, 24–25, 28
 maternal plasma, 51
 placental
 metabolism of, 24, 26
 uptake of, 50–51
Serine-glycine exchange, fetal hepatic and placental, 49–52, 50f, 51f
Serine-to-glycine transfer, placental, 24–25, 28
Smoking. See Tobacco smoking
Somatomammotropin. See Human placental lactogen (hPL)
 (somatomammotropin)
Somatostatin, activity of, 67
Stat proteins, in signal transduction cascade, 88f, 89
Steroid hormone(s)
 biosynthesis of, 61f
 estrogens, 62
 progesterone, 59–61, 60f, 61f
Syncytiotrophoblast cells, in placental development, 32, 32t, 33, 70, 71, 73
Syndrome X (insulin resistance and hypertension in gestational diabetes), 211
SUBJECT INDEX

T
- Thing-1/Hxt/e-HAND, in trophoblast cell regulation, 38
- Third trimester, maternal plasma lipoprotein:triglyceride-to-cholesterol in, 171, 172f
- Tobacco smoking vs. cocaine use effect on intrauterine growth, 238–239 effects on placental structure and function, 247–249
- Tobacco use, intrauterine growth restriction with, 151
- Triglycerides accumulation in lipoproteins hormonal factors in, 173 during late gestation, 172–173, 173f in pregnancy, 171–172, 172f
- Trophoblast cell lineage, 31–33, 32f extravillous, 32t, 33 future research in, 39–40 human, 32, 32t, 33 intravillous, 32t, 32–33 rodent, 32
- Trophoblast cell lines placenta-derived, 34 tumor-derived, 35 virally transformed, 34–35
- Trophoblast cells cytotrophoblast, 32, 32t syncytiotrophoblast, 32, 32t, 33
- Tyrosine phosphorylation of, 88, 89 reduction in fetal in maternal hypoxia, 132, 135, 136

U
- Uteroplacental perfusion, fetal effects of reduction in, 228, 229

V
- Valine placental utilization of, 23 umbilical venous plasma concentration of in IUGR fetuses, 194 uptake of, uterine vs. umbilical, 22
- Vascular cell adhesion molecule-1 (VCAM-1), in trophoblast cell regulation, 37
- Very-low-density lipoprotein (VLDL) triglycerides in pregnancy, 171–172, 172f production and plasma increase of, 172, 173f

Z
- Zinc metabolism of cadmium, 248 uptake in smokers vs. nonsmokers, 248