NUTRITIONAL ADAPTATION
OF THE GASTROINTESTINAL
TRACT OF THE NEWBORN
Nutritional Adaptation of the Gastrointestinal Tract of the Newborn, Third Nestlé Nutrition Workshop, Talloires, France, June 3–6, 1982

Nutritional Adaptation of the Gastrointestinal Tract of the Newborn

Editors

Norman Kretchmer, M.D.
Department of Nutritional Sciences
University of California at Berkeley
Berkeley, California, and
Department of Obstetrics and Pediatrics
University of California at San Francisco
San Francisco, California

Alexandre Minkowski, M.D.
Centre de Recherche de Biologie du Développement Foetal et Neonatal
Hôpital Port Royal
Paris, France

Nestlé Nutrition Workshop Series
Volume 3

NESTLÉ NUTRITION, VEVEY

RAVEN PRESS • NEW YORK
Preface

The gastrointestinal tract is an incredibly important organ, one of the primary organs in contact with the environment. Technically, any nutritional event that takes place requires the participation of the gastrointestinal tract. This volume, the third in the Nestlé Nutrition series, updates the most recent advances in developmental gastroenterology and relates these advances to human nutrition.

In order to lay a solid foundation for understanding the relationship between structure and function of the gastrointestinal tract, the volume opens with a section on fundamental biology. Structural studies are the first steps in the understanding of differences in cellular activity. Intestinal cells are in a continuous developmental cycle. In general, intestinal epithelial cells function in digestion and absorption, but there are also cells with specific functions that involve synthesis and elaboration of specific peptide hormones while others are concerned with synthesis of mucopolysaccharides.

The site of absorption and digestion of peptides and disaccharides is the brush border. Peptide absorption is a main contributor to the nutritional economy of the organism. In general, peptides are absorbed more rapidly by the cells of a young animal and transit the cell more quickly than in the cells of an older animal. Differences between young and old are also apparent with carbohydrates. Lactose is an example of a disaccharide that is digested more effectively by the young animal. Sucrase does not appear as an active enzyme nor is sucrose digested by the epithelia of the rat until two weeks after birth, after which the enzyme adapts to the concentration of sucrose in the diet.

Adaptation is a characteristic of all organisms and is specifically encountered in the gastrointestinal tract. Possibly, the fact that the gastrointestinal tract has direct contact with the environment emphasizes its structural and functional capability for adaptation to dietary change. This important aspect of intestinal physiology is clearly demonstrated by all the enzymes of the pancreas and many of the enzymes of the intestinal epithelium.

The second section, “Clinical Aspects of Gastrointestinal Function,” is composed of two important chapters. The first discusses noninvasive techniques for the evaluation of intestinal function. The second covers the puzzling and elusive necrotizing enterocolitis.

The last section of the book is concerned with infant nutrition. The first complete food to gain entrance to the gastrointestinal tract postnatally is milk, and its constituents are exceedingly important to the well-being of the recipient. These substances are a result of the millenia of evolutionary adaptation of the mammary gland. This biological fact alone should indicate that the milk produced by the human has been carefully biologically molded for the human.
This fact should not obviate against usefulness of specially created preparations of milk for those babies or mothers who need them.

Nutrition of the fetus and infant is critical since malnourishment early in life can have an effect over an entire lifetime. The fetus is completely dependent on the maternal diet and maternal physiologic vicissitudes. The small-for-gestational-age baby and the large-for-gestational-age baby are remarkable examples of the results of poor maternal nutrition. The former is an indication of undernutrition and the latter typifies overnutrition. There are also many environmental factors that could participate in the pathogenesis of these particular situations. Large-for-gestational-age and small-for-gestational-age infants are subjected to a variety of immediate and long-term risks. In the very-low-birth-weight infant there is a definite immaturity of the gastrointestinal tract. Often, in order to provide adequate nutrition for these infants, there is a need for complete or partial parenteral nutrition to provide for normal growth while waiting for the gastrointestinal tract to attain an adequate stage of development. Initially, the large-for-gestational-age infant also has a great deal of difficulty adjusting to the extrauterine environment. The problem of macrosomia derives in part from the inability for regulation of carbohydrate metabolism as a result of hyperinsulinism during pregnancy.

The conference was organized to exchange ideas, increase communication between disciplines, and to stimulate new thoughts and research activities. The material that follows gives evidence of the fulfillment of these goals. This volume will be of interest to pediatricians, internists and general practitioners, as well as specialists in epidemiology, nutrition, microbiology, immunology, and infectious diseases.

Norman Kretchmer, M.D.
Alexandre Minkowski, M.D.
Foreword

The Nestlé Nutrition Workshops are now well established. This volume is the third in the series, and four more workshops have been held in the period since the Talloires meeting.

By bringing together leading specialists in the field and widely diffusing the findings of each workshop we aim to contribute to an improved understanding of the important problems in pediatric nutrition.

P. R. Guesry, M.D.
Vice-President
Nestlé Nutrition S.A.
Acknowledgments

This volume is the third in a series based on workshops sponsored by Nestlé Nutrition, which is now an important contributor in the field of infant and young child nutrition. The meeting also represented a solid effort to establish cooperation among researchers throughout the world, as exemplified by the co-sponsorship by ARME (Aide à la Recherche Médicale pour l'Enfance) and the International Organization for the Study of Human Development.

Research in nutrition is a priority with the present state of our world. We intend to pursue that effort in the future with the help of Nestlé Nutrition.

Alexandre Minkowski, M.D.
Contents

Fundamental Biology

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successive Phases of Human Fetal Intestinal Development</td>
<td>3</td>
</tr>
<tr>
<td>Pamela C. Colony</td>
<td></td>
</tr>
<tr>
<td>Anchoring and Biosynthesis of Small-Intestinal Sucrase–Isomaltase</td>
<td>29</td>
</tr>
<tr>
<td>Giorgio Semenza</td>
<td></td>
</tr>
<tr>
<td>Effect of Variation of Dietary Intake of Starch and Sucrose on the Activity of Sucrase and Lactase in Jejunum of Adult Rats</td>
<td>43</td>
</tr>
<tr>
<td>Otakar Koldovský, Sergio Bustamante, Toshinao Goda, and Kazuhiko Yamada</td>
<td></td>
</tr>
<tr>
<td>Fetal Forms of Enzymes of Intestinal Brush Border</td>
<td>53</td>
</tr>
<tr>
<td>S. Auricchio</td>
<td></td>
</tr>
<tr>
<td>Influence of Lymphocytes and of Cell-Mediated Immunity on the Epithelial Cell Kinetics in the Intestine</td>
<td>59</td>
</tr>
<tr>
<td>Anne Ferguson, Allan McI. Mowat, and Stephan Strobel</td>
<td></td>
</tr>
<tr>
<td>Protein Digestion and Absorption</td>
<td>73</td>
</tr>
<tr>
<td>D. M. Matthews</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Aspects of Gastrointestinal Function

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noninvasive Techniques for the Evaluation of Gastrointestinal Function</td>
<td>95</td>
</tr>
<tr>
<td>Jay A. Perman</td>
<td></td>
</tr>
<tr>
<td>Necrotizing Enterocolitis</td>
<td>107</td>
</tr>
<tr>
<td>John Barnard, Harry Greene, and Robert Cotton</td>
<td></td>
</tr>
</tbody>
</table>

Infant Nutrition

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some Pathophysiologic Changes in Experimental Intrauterine Malnutrition</td>
<td>131</td>
</tr>
<tr>
<td>A. Minkowski and C. Chanez</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

Fetal Growth Retardation Caused by Maternal Dietary Amino Acid Imbalance ... 151
Jack Metcoff, T. Cole, P. Lunn, and S. Salem

The Use of Intravenous Fat Emulsions in Preterm Infants 163
Philip Sunshine and John A. Kerner, Jr.

Nutrient Deposit in Low-Birth-Weight Infants 177
G. Putet and J. Senterre

Nutrition of the Low-Birth-Weight Infant 185
Niels C. R. Räihä

Parenteral Nutrition in the Very-Low-Birth-Weight Infant ... 191
J. Rigo and J. Senterre

Modifications of Human Milk Composition During the Early Stages of Lactation ... 209
B. Ribadeau Dumas

Introduction of Weaning Foods into the Infant’s Diet 215
Olikoye Ransome-Kuti

Subject Index ... 223
Contributors

*S. Auricchio
Clinica Pediatrica II
Facoltà di Medicina e Chirurgia di Napoli
Università Napoli
Naples, Italy

John Barnard
Department of Pediatrics
Division of Pediatric Gastroenterology/Nutrition
Nutrition Center
Vanderbilt School of Medicine
Nashville, Tennessee 37232

Sergio Bustamante
Departments of Pediatrics and Physiology
University of Arizona Health Sciences Center
Tucson, Arizona 85724

C. Chanez
Centre de Recherches Biologiques du Développement Foetal et Neonatal INSERM U29
Université René Descartes
Hôpital Port-Royal
F-75014 Paris, France

T. Cole
MRC-Dunn Nutritional Laboratories
Cambridge, United Kingdom

*Pamela C. Colony
Department of Anatomy
Pennsylvania State University
Milton S. Hershey Medical School
Hershey, Pennsylvania 17033

Robert Cotton
Department of Pediatrics
Division of Pediatric Gastroenterology/Nutrition
Nutrition Center
Vanderbilt School of Medicine
Nashville, Tennessee 37232

*Anne Ferguson
Gastrointestinal Unit
Western General Hospital and University of Edinburgh
Crewe Road
Edinburgh EH4, United Kingdom

Toshinao Goda
Departments of Pediatrics and Physiology
University of Arizona Health Sciences Center
Tucson, Arizona 85724

*Harry Greene
Department of Pediatrics
Division of Pediatric Gastroenterology/Nutrition
Nutrition Center
Vanderbilt School of Medicine
Nashville, Tennessee 37232

John A. Kerner, Jr.
Department of Pediatrics
Division of Neonatology and Gastroenterology
Stanford University School of Medicine
Stanford, California 94305

*Otakar Koldovský
Departments of Pediatrics and Physiology
University of Arizona Health Sciences Center
Tucson, Arizona 85724

* Conference participants.
CONTRIBUTORS AND ATTENDEES

P. Lunn
MRC–Dunn Nutritional Laboratories
Cambridge, United Kingdom

* D. M. Matthews
Department of Experimental Chemical Pathology
Vincent Square Laboratories of Westminster Hospital
124 Vauxhall Bridge Road
London SW1V 2RH, United Kingdom

* Jack Metcalf
University of Oklahoma Health Sciences Center
Oklahoma City, Oklahoma 73190

A. Miukowski
Centre de Recherches Biologiques du Développement Foetal et Neonatal
INSERM U29
Université René Descartes
Hôpital Port-Royal
F-75014 Paris, France

* Allan Mel. Mowat
Department of Bacteriology and Immunology
Western Infirmary
Glasgow, United Kingdom

* Jay A. Perman
Department of Pediatrics
University of California at San Francisco
San Francisco, California 94143

* G. Putet
INSERM U34 and Departement Neonatal (Professeur B. Salle)
Hôpital Edouard-Herriot
69374 Lyon Cedex 08, France

* Niels C. R. Räihä
Department of Pediatrics
University of Lund
214 01 Malmö, Sweden

* Olikoye Ransome-Kuti
Department of Paediatrics and Primary Care
Institute of Health and Primary Care
College of Medicine
University of Lagos
P.M.B. 12003 Lagos, Nigeria

* B. Ribadeau Dumas
Institut National de la Recherche Agronomique, C.N.R.Z.
78350 Jouy-en-Josas, France

* J. Rigo
Département de Pédiatrie
Université de Liège et Hôpital de Bavière
B-4020 Liège, Belgium

S. Salem
MRC–Dunn Nutritional Laboratories
Cambridge, United Kingdom

* Giorgio Semenza
Laboratorium für Biochemie der ETH ETH-Zentrum
CH-8092 Zürich, Switzerland

J. Senterre
Département de Pédiatrie
Université de Liège et Hôpital de Bavière
B-4020 Liège, Belgium

Stephan Strobel
Gastrointestinal Unit
Western General Hospital and University of Edinburgh
Crewe Road
Edinburgh EH4, United Kingdom
CONTRIBUTORS AND ATTENDEES

*Philip Sunshine
Department of Pediatrics
Division of Neonatology and Gastroenterology
Stanford University School of Medicine
Stanford, California 94305

Kazuhiko Yamada
Departments of Pediatrics and Physiology
University of Arizona Health Sciences Center
Tucson, Arizona 85724

Invited Attendees

Franck Arnaud-Battandier/Paris,
France
Jean-Jacques Baudon/Paris, France
J. P. Chouraqui/La Tronche, France
Edouard Demaeyer/Louvain,
Belgium
Roger Eeckels/Leuven, Belgium
Edurne Gamarra/Paris, France
Robert Greenberg/Albuquerque,
New Mexico
Stefan Hagelberg/Stockholm, Sweden
Bogustaw Halikowski/Szczecin,
Poland
Robert Jacquot/Reims, France
Norman Kretchmer/Berkeley,
California
Anne Malbeau-Jacquot/Reims,
France
Luis Marin/Stockholm, Sweden
Chantal Maurage/Tours, France
Pierre Rambaud/La Tronche, France
Jean-Jacques Relier/Paris, France
Jean Rey/Paris, France
Jacques Riby/Berkeley, California
Bernard Salle/Lyon, France
Harry Schwachman/Boston,
Massachusetts
Leonard Strang/London, United Kingdom
Rolf Zetterström/Stockholm, Sweden

Nestlé Participants

Y. Barbieux
Senior Vice President
Nestlé Products Technical Assistance Company Ltd.
1814 La Tour-de-Peilz, Switzerland

Beat Schürch
Director
Nestlé Foundation
Lausanne, Switzerland

Pierre R. Guesry
Vice President
Nestlé Nutrition, S. A.
1800 Vevey, Switzerland

Richard Theuer
Vice President
Beech-Nut Nutrition Corporation
Fort Washington, Pennsylvania 19034

J. J. Pahud
Nestlé Research Department
1814 La Tour-de-Peilz, Switzerland