Disclaimer
Nestlé Nutrition-Nestec Ltd./S. Karger AG cannot be held responsible for errors or omissions, or for any consequences arising from the use of the information contained herein.

Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Contents

93 Editorial

96 Homeostatic Regulation of Iron and Its Role in Normal and Abnormal Iron Status in Infancy and Childhood
Lönnerdal, B. (Davis, Calif.); Hernell, O. (Umeå)

105 Iron Deficiency in Childhood: Causes and Consequences for Child Development

120 Prevention of Iron Deficiency in Infancy, Childhood and Adolescence
Andersson, M.; Hurrell, R.F. (Zürich)

132 Efficacy and Safety of Iron Administration in Juvenile Populations
Schümann, K. (Freising); Solomons, N.W. (Guatemala)
The Nestlé Nutrition Institute was created to provide health professionals with up to date information on nutrition and nutrition-related disorders in order to enable them to continuously improve patient care based on the latest medical and scientific breakthroughs.

One of the key pillars of the Nestlé Nutrition Institute is the *Annales Nestlé*, a pediatric journal that has been published on a regular basis since 1942. It contains review articles on clinical practice and research in all fields of pediatrics with focus on nutrition. Each publication deals with one specific topic, such as diabetes mellitus, HIV and nutrition or infant growth. The *Annales Nestlé* comprises 3 issues each year in 3 languages (English, French and Spanish), and with around 50,000 copies per issue is one of the most widely read pediatric journals in the world.

The *Annales Nestlé* is edited by an independent editorial board of six highly respected professors of pediatrics, thus guaranteeing the medical and scientific impartiality of the journal, and hence the high level of respect and appreciation in medical and scientific circles. The editorial board sets editorial policy, identifies topics to be addressed, selects authors and assesses the articles' contents.

The *Annales Nestlé* are published by S. Karger AG, one of the world's most highly respected scientific and medical publishers.

Prof. Ferdinand Haschke, MD, PhD
Chairman
Nestlé Nutrition Institute
Vevey (Switzerland)
Editorial

Thus, it is quite clear that prevention of ID is an important task as well as treatment of already established deficiency, particularly if it is pronounced enough to cause iron deficiency anemia (IDA). Iron is, however, a double-edged sword because of the ability of ferrous iron to reduce oxygen intermediate species to harmful free radicals. Due to this and the low solubility of ferric iron at physiological pH, all organisms have binding molecules, or chelators, in order to transport and store iron and to control its reactivity. The concentrations of these are often used to assess iron status. During recent years, it has become increasingly evident that for many nutrients more is not necessarily better, and this is particularly true for iron. A challenging task is to define those individuals who are at risk of developing ID and those who have already established deficiency as well as to design proper preventive strategies and treatment protocols for those target groups or individuals. Much new information has been obtained during the last decade on the requirements, metabolism, physiological and neurodevelopmental effects of iron as well as of ID and the effects of various preventive strategies. Because of this and the lessons learned that this might be a more difficult challenge than previously thought, this issue of the *Annales Nestlé* is dedicated to the topic of 'Iron in Infancy and Childhood'.

Bo Lönnerdal from the Department of Nutrition, University of California, Davis, Calif., USA, and Olle Hernell from the Department of Clinical Sciences/Pediatrics, University of Umeå, Sweden, introduce the readers to the dynamics of iron status during infancy in term and preterm infants as well as the molecular mechanisms of iron.
absorption and its regulation. They raise the question if the conventional definitions of ID (typically defined as s-ferritin concentration <12 ug/l) and anemia (typically defined as hemoglobin concentration <110 g/l) are appropriate for infants, or if these definitions may in fact overestimate the prevalence of both ID and IDA. New cutoff values are suggested for these and other useful indicators of ID such as s-transferrin receptors, s-zinc protoporphyrin and mean cell volume. They also question whether definitions should be different for boys and girls based on a Swedish-Honduran study showing lower hemoglobin, mean cell volume and s-ferritin and higher s-transferrin receptor and s-zinc protoporphyrin concentrations in boys than in girls at 4, 6 and 9 months of age. At 9 months of age, boys were also at a greater risk of being classified with IDA than girls. To what extent these observations reflect normal physiological differences in these indicators between genders already at this age, or reflect higher incidence of ID in boys, needs to be studied. Another point raised is if iron homeostasis may not be fully developed at birth. Whereas 9-month-old infants appear to be able to downregulate iron absorption when they are iron replete, 6-month-old infants cannot do this. Iron may be provided to infants as drops or in iron-fortified products. There is evidence to suggest that the forms provided may be metabolized differently and excess iron in drops may cause adverse effects, possibly due to the limited ability to regulate iron absorption in young infants.

Sally Grantham-McGregor and Helen Baker-Henningham from the Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica, briefly explain why ID could affect neurodevelopment and cognition and then examine systematically and critically studies of ID and child cognitive and motor development and behavior for evidence of a causal link, thereby classifying the various studies based on how they were designed and the age of the children. It is noted that children with IDA generally come from poor socioeconomic backgrounds, which could account for some or all their deficits. On the other hand, it is clear that infants with diagnosed IDA have evidence of disturbed brain function. The authors rightfully point out that many trials aiming at treatment of ID lack statistical power due to small sample sizes, inclusion of children without ID in the sample, or due to iron treatment resulting in little or no differences in iron status between the placebo and the treated group(s). In children with IDA below 3 years of age, randomized trials indicate that iron supplementation is usually beneficial to motor development, but the effect on mental development is inconsistent and more studies are needed. Iron supplementation also benefits cognitive function in school-aged children with IDA. Evidence for a threshold level of ID at which child development is affected seems inconsistent, but children with ID severe enough to result in IDA are most likely to benefit from iron supplementation.

Maria Andersson and Richard F. Hurrell from the Human Nutrition Laboratory, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland, discuss in depth various strategies to prevent ID in infants and children. Generally accepted prevention measures for infants include iron supplementation of pregnant women, delayed cord clamping at delivery and exclusive breast-feeding for 4–6 months. That complementary foods given after the first 4–6 months are rich in iron is critical. Iron fortification of infant formulas, infant cereals, micronutrient powders for addition to home-prepared complementary foods, or provision of iron drops are the most effective prevention strategies. Early introduction of meat products and delayed introduction of cow’s milk are also important. Effective strategies in older children include approaches to increase the iron content and bioavailability of the diet and consumption of iron-fortified foods. In areas of extensive ID, iron supplementation is often required, although iron fortification is the most cost-effective intervention strategy. However, only iron compounds of high bioavailability should be used. At home, iron fortification for infants and young children should be expanded in low-income countries. The authors suggest that all interventions to control pediatric ID should be integrated into larger national and global health programs for pregnant women and children, including health education, malaria prevention and deworming, and that the impact of ID prevention strategies on the prevalence of ID should be monitored by measuring iron status periodically in population-based cross-sectional studies.

Finally, Klaus Schümann from the Center for Nutrition and Food Research, Technische Universität München, Freising, Germany, and Noel W. Solomons from the Center for Studies of Sensory Impairment, Aging and Metabolism, Guatemala City, Guatemala, address the important issue of efficacy and safety of iron administration. Administration of iron is part of any strategy for preventing or reversing ID. Iron can be administered parenterally or, as mentioned, as fortified foods or oral supplements. Efficacy means the ability to reverse ID or increase iron stores. Once efficacy has been established, either via the enteral or parenteral route, the impact of an
intervention becomes the measure of effectiveness. Safety issues may appear at the point of administration, i.e. in the gut lumen, and as a consequence of excessive iron stores resulting from the interventions. Parenteral iron administration has not been widely used in children, but recent improvements in the pharmacology of parenteral iron compounds may change this, primarily for therapy in hospital settings, but even in public health. Oral supplementation in combination with folic acid (clinical setting) or multiple micronutrients (community level) is the cornerstone for treatment of IDA and for prophylaxis for the nonanemic population. Biofortification, i.e. enriching the iron content of crops during cultivation, is a novel approach to combat ID yet to be fully implemented or evaluated for children. Side effects and toxicity after oral iron intake are seen in the gut lumen. After oral and parenteral iron intake, the rise in circulating iron can increase the risk of complications from coexisting infections, notably with malaria, and when individual iron status is adequate. Growth impairment occurs with exposure of iron-sufficient children to iron interventions, so that targeting of iron to ID individuals seems advisable. Numerous adverse consequences from accumulation of excessive total body iron stores show up as a consequence of iron-mediated oxidative stress.

Although the physiological role of iron and the importance of preventing and treating ID and IDA are old, much of the new knowledge gained has focused on infants and children and highlights that also with respect to iron infants and young children are different from adults. This is reflected by their requirements, development of iron status, iron homeostasis, strategies for prevention and not least by the risk of adverse effects of too much iron given to iron-replete individuals.

Olle Hernell, Umeå
Michael Lentze, Bonn
Maria Makrides, Adelaide
Frank Rüemmele, Paris
Noel Solomons, Guatemala City
Hania Szajewska, Warsaw