CLINICAL TRIALS IN INFANT NUTRITION
METHODOLOGY, STATISTICS, AND ETHICAL ISSUES
The 40th Nestlé Nutrition Workshop, Clinical Trials in Infant Nutrition, was held in Washington, DC, USA, September 9–12, 1996.

CLINICAL TRIALS IN INFANT NUTRITION

METHODOLOGY, STATISTICS, AND ETHICAL ISSUES

Editors

Jay A. Perman
Virginia Commonwealth University
Medical College of Virginia
Department of Pediatrics
Richmond, Virginia, USA

Jean Rey
Hôpital des Enfants Malades
Département de Pédiatrie
Paris, France

NESTLÉ NUTRITION SERVICES

LIPPINCOTT-RAVEN • PHILADELPHIA
Preface

The theme of this Workshop is different from that of the previous Nestlé Nutrition Workshops. It does not assess state-of-the-art knowledge in a particular area of nutrition, as in earlier workshops, beginning with maternal nutrition during pregnancy in 1981. Nor does this Workshop deal with a major problem of nutritional pathology in the infant, as was the case, for example, when diabetes or diarrhea were recently Workshop topics.

The original subject of this 40th Nestlé Nutrition Workshop is its examination of the methodological, statistical, and ethical problems of conducting clinical trials in pediatric nutrition. The topics covered included: the legislative framework of the industrialized countries in which trials are conducted; moral obligations in developing countries, in particular where ethics committees have not yet been established; the regulations that the industry must observe in formulating product claims so as not to mislead the consumer and not to discourage breastfeeding; and, finally, the need to adhere to the fundamental ethical principle that is the primacy of protecting the best interest of individual infants and of children at large.

Randomized trials, meta-analyses, multicenter studies—all of these strategies have their advantages and disadvantages, which have been emphasized and discussed at length during this Workshop. It will surprise no one that participants easily accepted randomized controlled trials as the ideal method for the evaluation of nutritional factors that might influence the growth and development of low-birth-weight, full-term, healthy or ill infants.

Incomplete studies and incomplete subjects within the sample are related problems that deserve consideration. The selection of outcome variables is a crucial factor, since it determines the length and complexity of a study. As such, the choice of variables plays a decisive role in the percentage of studies abandoned in mid-course. The longer the study, the more essential is the cooperation of all those involved, in particular, that of the parents or caregivers. Despite their power, crossover studies may also be difficult to complete. They have the disadvantage of obliging participants to submit to two treatments instead of just one. This reduces compliance and increases attrition in the sample. However, there is nothing to prevent those who are less compliant from constituting a subset within a population—quite the contrary. Ignoring those who leave the study, especially those studies designed to evaluate the effects of nutrition on psychomotor development and intellectual performance, would thus be a major potential bias. On the other hand, analyzing the drop-out as a result reflects, to some extent, the acceptability of a treatment and is one way of evaluating its clinical usefulness.

Multicenter clinical trials offer, for their part, a certain number of advantages, in
particular that of obtaining broader patient representation and enhancing the validity
of results. However, such studies are generally very time-consuming and demand
considerable effort in order to maintain the interest of participating investigators
until their conclusion. Problems likely to arise during the study must therefore be
anticipated, which presupposes the involvement of all investigators in the protocol
planning. However, just as it seems to be essential to involve all investigators in
the intellectual process, it is necessary to use specially prepared staff at each site to
gather results and perform all practical tasks. When this is not the case, the undertak-
ing is often doomed to failure. One further challenge in multicenter clinical trials
is that the standardized protocols may limit the imagination and research questions
of individual investigators.

Meta-analyses also pose challenges and these were emphasized during this Work-
shop. The objective of this statistical approach is to synthesize the results of numer-
ous randomized controlled trials to highlight benefits or drawbacks that trials carried
out on smaller numbers of individuals are unable to detect. The basic problem is
obviously that of selecting studies that can reasonably be grouped together, since
the decision as to whether or not to include a study in the meta-analysis should take
only its methodology, and not its results, into account. The major criticism levied
against meta-analyses is the difficulty of analyzing all of the studies, including those
that have not been published, since negative results have a smaller chance of being
published than positive results. Unpublished results could, indeed, contradict those
that have been published. This highlights the importance, in the interests of validity,
of using tests making it possible to calculate the number of unpublished studies
liable to refute evidence drawn from published studies. It is also important, as has
been said, to take into consideration in the analysis the fact that some studies con-
ducted among small numbers of individuals evince huge differences—if not for
this, they would be insignificant—while others, conducted among large numbers of
individuals, show only minimal, if significant, differences.

Various scientific journals have recommended that, whenever justified, appropri-
ate indicators of uncertainties, such as the confidence interval (CI), be used. Despite
this, an analysis of publications shows that CIs are used only in exceptional cases,
demonstrating that the Vancouver recommendations have little impact on nutritional
research at the present time. This observation, which came to the fore during the
Workshop, confirmed our belief that it was necessary to clarify the significance of the
various tests and to try to demystify the concept of a ‘‘significant’’ value. Statistical
significance is often expressed as important, in contrast to an ‘‘insignificant’’ result,
which is generally considered to be unimportant. A high percentage of ‘‘negative’’
results is said to be only due to inadequate sample size. However, studies conducted
among large numbers of individuals often produce results that are declared to be
statistically significant, although differences are so slight that they are meaningless
in practical terms.

There are countless biases that we must all be aware of and, if possible, avoid.
If we look at data in written publications alone, we can readily see that there is an
inverse correlation between sample size and the magnitude of the effects observed;
this is easily explained by the fact that studies conducted among small numbers of individuals must evince huge differences to be significant. Of more interest to Workshop participants, however, and also more serious, is that the decision to submit an article for publication and that of the journal to accept or reject it are linked to the research results; significant results are favored at each stage. Authors apparently play an even more important role than publishers in this form of bias. These publication biases are liable to distort the interpretation of meta-analyses and, more generally, may misconstrue strategies for preventing and treating illness. Thus, profound reflection is necessary in order to try to remedy this source of bias. The idea of a register in which all clinical trials in progress would be recorded prospectively, whether or not they were subsequently published, is one way of achieving this. The prospective registration of studies would enable everyone to know that the study has been conducted, or should have been conducted, and this is the only means of avoiding any selection bias in the register itself.

All of these considerations are not peculiar to the field of clinical trials in pediatric nutrition, but should be borne in mind by those with an interest in it. This is all the more important given that the regulations imposed upon scientists are ever more strict and it will be increasingly necessary to demonstrate the "efficacy" (benefit) and "safety" (risk) of advances in pediatric nutrition. Safety has, to date, commanded less attention than efficacy. As a matter of fact, many participants emphasized that larger numbers of subjects were necessary to verify safety than to test efficacy, as trials conducted on very large samples are necessary to evince an incidence difference for a relatively rare event. This is illustrated perfectly in the discussion concerning the long-term consequences of infant nutrition on neurodevelopment. Indeed, only intervention studies, planned to allow long-term monitoring and having sufficient numbers to evince any undesirable effects, bring satisfactory results. Intervention studies that evaluate long-term effects and the absence of harmful effects must, therefore, be the foundation of public health policy.

It is also helpful to recall that each study raises new questions that modify the way subsequent studies are conceived. This point was illustrated remarkably well by the analysis of environmental factors on mental and motor development in infants. The situation is always more complex than one thinks at first; the approach of most researchers is, more often than not, naïve and simplistic in this respect. Environmental factors can be very different in developing countries than they are in industrialized countries, and the association between a nutritional disorder and poorer development is not necessarily causal. Both outcomes could be the separate results of underdevelopment, poverty, low-level parental education, and unfavorable environment. It is therefore the environment in which the infant lives that must be considered, with attempts to identify those factors that put the infant at risk and those that are most likely to be altered by intervention.

All of this cannot be carried out arbitrarily, without observing a whole series of fundamental principles. These were first stipulated in 1964 in the Declaration of Helsinki and reinforced subsequently on numerous occasions. Today these principles are accepted almost universally. The basic principles that should guide us do not
differ between Europe and North America, even if they have force of law in some countries and exist only as recommendations or guidelines in others; this is the result of cultural differences that go far beyond the field of ethics, but which leave its foundations unshaken. In our opinion, it is interesting to recall these principles and to analyze the way in which they influence our practice, especially in developing countries. In fact, the same rules apply throughout the world and every action should be taken to seek the opinion of a properly constituted local ethics committee. It is important that investigators working in developing countries are aware of particular sensitivities in these countries, and are convinced that every infant taking part in the study, including in the control group, will benefit at some level from participation. No long-term collaboration is possible if relationships of trust are not built, not only with those taking part in the study, but with former subjects, so as to obtain their consent "with hindsight."

Establishing a relationship of trust, including between industry and Nutrition Committees, is at the heart of this discussion on clinical trials in infant nutrition. Industry must understand the reasoning of pediatricians and nutritionists, but it must also assert its point of view when it does not go against basic principles. One of the difficulties in this respect is knowing just how far industry can go in the messages it conveys. It was therefore worthwhile recalling existing legislation relating to functional and health claims in the United States, Canada and Europe, as well as the principles of the Codex Alimentarius, which apply worldwide. The idea that claims should be authorized, provided that they are not false or misleading, must be the main idea behind all legislation. But, just as the burden of proof should be incumbent on industry and not on government, so industry must be allowed sufficient freedom. To the extent that the benefits claimed are scientifically proven, it would indeed be detrimental to the entire community, and in particular to infant health, if industry were unable to make justifiable claims. The purpose of regulations is not to hinder progress, but to protect consumers and to be of benefit to the population.

The goal of this Workshop is to give future investigators a better understanding of the methods that are the most appropriate to clinical trials in pediatric nutrition. We hope that this monograph will serve the pediatric community, which is so keenly interested in infant nutrition, as well as established and aspiring clinical investigators, biostatisticians, members of ethics committees, and regulatory bodies.

JAY A. PERMAN, M.D.

JEAN REY, M.D.
Foreword

The topic of the 40th Nestlé Nutrition Workshop focused on methodological aspects of clinical research. It deviated from the previous 39 workshops that covered selected topics in the field of clinical pediatrics, pediatric nutrition, and nutrition education. Clinical trials need to be done before medical food, formulas for special target groups, and infant formulas and cereals are newly introduced or substantially revised.

International and national bodies such as the American Academy of Pediatrics or the Committee of the Ministers of the Council of Europe have published principles on the ethics of medical research, which include guidelines for clinical trials. Food companies that produce dietetic products for infants are now challenged to follow these guidelines.

Besides ethical aspects, other aspects of good clinical practice during research need to be observed. No clinical trial without adequate experimental design should be proposed. “Bad science” per se is unethical because infants are unnecessarily exposed to potential risks.

This workshop summarized ethical standards for clinical trials in developing and industrialized countries and focused on adequate experimental design. Our primary goal must be to demonstrate that new or renovated infant food is safe and adequate for the target population. Health claims in the infant food area without convincing clinical support from clinical trials are no longer acceptable. Companies are requested to prove health claims and authorities to monitor their adequacy.

Professor F. Haschke, M.D.
Vice-President
Nestec Ltd., Vevey, Switzerland
Contents

Guidelines for the Ethical Study of Drugs in Infants and Children and the FDA Regulations .. 1
Ralph E. Kauffman

Specific European Union Aspects on Ethics of Clinical Trials 17
Peter J. Aggett

Ethical Aspects of Nutritional Research on Infants in Developing Countries .. 33
Roger G. Whitehead

Statistical Analysis: Significance Tests vs. Confidence Intervals ... 47
Stephen D. Walter

Selection of Variables, Timing of Examinations, and Retention 67
Alex F. Roche and Shumei Guo

Meta-Analyses of Clinical Trials ... 85
Henry S. Sacks

Publication Bias in Clinical Research: Outcome of Projects Submitted to Ethics Committees ... 105
Jesse A. Berlin

Design of Randomized Clinical Trials: Review of Criteria for Patient Inclusion in Trials of Infant Nutrition 121
Frank L. Iber

Pediatric Gastroenterology Collaborative Research Group (PGCRG) Success and Failures in Multicenter Clinical Trials 137
George D. Ferry

Nutrition, Diet, and Infant Development: Long-Chain Polyunsaturated Fatty Acids in Infant Neurodevelopment 153
Ricardo Uauy-Dagach, Patricia N. Mena, and Dennis R. Hoffman
CONTENTS

Long-Term Outcome Trials of Early Nutrition on Later Health and Development .. 181
Alan Lucas

Considering Environmental Factors in Research on Nutrient Deficiencies and Infant Development 203
Betsy Lozoff

Health Claims in Infant Formulas and Foods: U.S. Regulations ... 219
Elisabeth A. Yetley

Regulation of Claims on Infant Foods in Canada ... 231
Margaret C. Cheney and Christiana M. Zehaluk

Health and Functional Claims in the European Union ... 237
Jean Rey

Clinical Trials in Infant Nutrition: The Role of the American Academy of Pediatrics and the Committee on Nutrition 259
John N. Udall, Jr. and Robert M. Suskind

Conclusions .. 271

Subject Index .. 273
Contributors

Speakers

Peter J. Aggett
Institute of Food Research
Norwich Research Park
Colney Lane
Norwich NR4 7UA
England

Ralph E. Kauffman
Office of Medical Research
Children’s Mercy Hospital
University of Missouri
2401 Gillham Road
Kansas City, Missouri 64108
U.S.A.

Jesse A. Berlin
Center for Clinical Epidemiology and Biostatistics
University of Pennsylvania
School of Medicine
Room 815 Blockley Hall
423 Guardian Drive
Philadelphia, Pennsylvania 19104
U.S.A.

Betsy Lozoff
The Center for Human Growth and Development
University of Michigan
300 North Ingalls
Ann Arbor, Michigan 48109
U.S.A.

Margaret C. Cheney
Chief Nutrition and Evaluation Division
Food Directorate, Health Protection Branch
Banting Building 2203A,
Tunney’s Pasture
Ottawa, Ontario K1A OL2
Canada

Alan Lucas
MRC Childhood Nutrition Research Centre
Institute of Child Health
30 Guilford Street
London WC1N 1EH
England

George D. Ferry
Gastroenterology and Nutrition #3-3391
Texas Children’s Hospital
6621 Fannin
Houston, Texas 77030
U.S.A.

Jay A. Perman
Jessie Ball DuPont Professor and Chairman
Department of Pediatrics
Medical College of Virginia
Virginia Commonwealth University
Box #980646
Richmond, Virginia 23298
U.S.A.

Frank L. Iber
Loyola University
Edward Hines Jr. VA Hospital
Gastroenterology—Room 1289
5th and Roosevelt
Hines, Illinois 60141
U.S.A.

Jean Rey
Hôpital des Enfants Malades
Département de Pédiatrie
149, rue de Sèvres
75743 Paris Cédex 15
France
CONTRIBUTORS

Alex F. Roche
Department of Community Health
Wright State University
1005 Xenia Avenue
Yellow Springs, Ohio 45387
U.S.A.

Henry S. Sacks
The Mount Sinai Medical Center
Clinical Trials Unit, Box 1042
One Gustave L. Levy Place
New York, New York 10029
U.S.A.

Ricardo Uauy-Dagach
Institute of Nutrition Food Technology
INTA
University of Chile
Casilla 138-11
Santiago
Chile

John N. Udall, Jr.
Department of Pediatrics
Gastroenterology and Nutrition Division
Louisiana State University Medical Center
1542 Tulane Ave., T8-1
New Orleans, Louisiana 70178
U.S.A.

Stephen D. Walter
Department of Clinical Epidemiology and Biostatistics
McMaster University
1200 Main Street West
Hamilton, Ontario L8N 3S5
Canada

Roger G. Whitehead
MRC Dunn Nutrition Center
Downhams Lane
Milton Road
Cambridge CB4 1XJ
England

Elizabeth A. Yetley
Center for Food Safety and Applied Nutrition
U.S. Food and Drug Administration
200 C Streets, SW
Washington, D.C. 20204
U.S.A.

Session Chairmen

Robert Hamburger / USA
M. A. van’t Hof / The Netherlands
Jay Perman / USA
Hildegard Przyrembel / Germany
CONTRIBUTORS

Invited Attendees

Lillian Beard / USA
Elisabeth Becher / Switzerland
Daniel Brasseur / Belgium
Mavilda Brito / Portugal
Jean-Pierre Cezard / France
Jean-Pierre Chouraqui / France
Larissa Chtchepleguina / Russia
Petronella Clarke / UK
Ana Culcer / Romania
Ali Debbabi / Tunisia
Frank Falkner / USA
Mauro Fisberg / Brazil
Cuberto Garza / USA
Walter Glinsmann / USA
Maciej Kaczmasrki / Poland
John Kerner / USA
Ronald Kleinman / USA
William Klish / USA
Michael J. Lentze / Germany
Meng Mao / China
Véronique Millet / France
Abdesselam N’Bou / Morocco
Frank Pohlndt / Germany
Staffan Polberger / Sweden
Michael Radke / Germany
Cesar Velasco Rodas / Mexico
Jose Saavedra / USA
Bernard Salle / France
Ricardo Sorensen / USA
Madeleine Sumpaico / Philippines
Umaporn Suthutvoravut / Thailand
Reginald Tsang / USA
Dominique Turck / France
Cecil T. Vella / Malta
Wei Ping Wang / China
Tzee-Chung Wu / Taiwan
Karl Zwaioer / Austria

Nestlé Representatives

Jean-Marc Aeschlimann / Switzerland
Steve Allen / USA
Marcel Baumgartner / Switzerland
Cindy Brown / USA
Roger Clemens / USA
Gayle Crozier / Switzerland
Lennart Dillnet / Switzerland
Biana-Maria Exl / Germany
Melanie Fairchild / USA
Roger H. Gould / Canada
Pierre Guesry / Switzerland
Lajos Hanzel / Hungary
Ferdinand Haschke / Switzerland
Linda Hsieh / USA
Laurie MacDonald / USA
Eileen Madden / USA
Nick Melachouris / Switzerland
Marie-José Mozin / Belgium
Vipapan Panitantum / Thailand
Ulrich Preysch / Switzerland
Carol Savage / USA
Marie-Christine Secretin / Switzerland
Philippe Steenhout / Switzerland
Ernie Stripazon / USA
Elena Trofimenko / Russia
L.D. Van Egroo / France
Kai Voepel / USA
Joe Weller / USA
Robyn Wimberly / USA
Nestlé Nutrition Workshop Series

Volume 40: Clinical Trials in Infant Nutrition
Jay A. Perman and Jean Rey, Editors; 304 pp., 1998.

Volume 39: Placental Function and Fetal Nutrition
Frederick C. Battaglia, Editors; 288 pp., 1997.

Volume 38: Diarrheal Disease
Michael Gracey and John A. Walker-Smith, Editors; 368 pp., 1997.

Volume 37: Feeding from Toddlers to Adolescence
Angel Ballabriga, Editor; 320 pp., 1996.

Volume 36: Long-Term Consequences of Early Feeding
John Boulton, Zvi Laron, and Jean Rey, Editors; 256 pp., 1996.

Volume 35: Diabetes
Richard M. Cowett, Editor; 320 pp., 1995.

Volume 34: Intestinal Immunology and Food Allergy
Alain L. de Weck and Hugh A. Sampson, Editors; 320 pp., 1995.

Volume 33: Protein Metabolism During Infancy
Niels C. R. Räihä, Editor; 264 pp., 1994.

Volume 32: Nutrition of the Low Birthweight Infant
Bernard L. Salle and Paul R. Swyer, Editors; 240 pp., 1993.

Volume 31: Birth Risks
J. David Baum, Editor; 256 pp., 1993.

Volume 30: Nutritional Anemias
Samuel J. Fomon and Stanley Zlotkin, Editors; 232 pp., 1992.

Volume 29: Nutrition of the Elderly
Hamish N. Munro and Günter Schlierf, Editors; 248 pp., 1992.

Volume 28: Polyunsaturated Fatty Acids in Human Nutrition
Umberto Bracco and Richard J. Deckelbaum, Editors; 256 pp., 1992.

Peter Leathwood, Marc Horisberger, and W. Philip T. James, Editors; 272 pp., 1993.

Volume 26: Perinatology
Erich Saling, Editor; 208 pp., 1992.

Volume 25: Sugars in Nutrition
Michael Gracey, Norman Kretchmer, and Ettore Rossi, Editors; 304 pp., 1991.

Volume 24: Inborn Errors of Metabolism
Jürgen Schaub, François Van Hoof, and Henri L. Vis, Editors; 320 pp., 1991.

Volume 23: Trace Elements in Nutrition of Children—II
Ranjit Kumar Chandra, Editor; 248 pp., 1991.

xvii

Volume 21: Rickets
Francis H. Glorieux, Editor; 304 pp., 1991.