Subject Index

A
- Adipocyte lipid, 92
- Adolescent growth spurt, 123
- Adrenal androgen, 116
- Adult size, 58
- Age, 35
- Age group, 35
- Alcohol, 108
- Anemia, 106–107
- Anorexia
 - etiology, 148
 - zinc deficiency, 148
- Anorexia nervosa, 122
- Anthropometric variables, socio-economic status, 60–61
- Anthropometry, 226–229
- Antipoverty program, 276
- Asian population
 - child size, 64
 - genetic influence, 75–85
 - early growth characteristics, 85
 - linear growth velocity, 87
- Aspirin, 100

B
- Bangladesh, 37, 245
- Beta blocker, 100
- Beta sympathomimetic, 100
- Birth weight
 - environmental factors, 91, 92
 - genetic factors, 91, 92
- Black, 65–66
- Bladder stone disease, 136
- Body composition, 226–229
- Body mass index, 89, 90
- Body segment, differential growth, 88
- Body size, 1
 - adult, 217–225
 - children, 225–229
 - composition, 229–230
 - endurance, 222–223
 - productivity, 223–225
 - work capacity, 215–243
 - work performance, 235
- Bone growth, calcium deficiency, 128–130
- Bone loss, 138–139
- Brain, work hypertrophy, 212
- Breast feeding, 4–5, 12, 13, 277
 - United States, 64
- Bunching, 52
- Bushman, 89

C
- Calcium
 - animal studies, 129–130
 - dietary, availability, 131–132
 - human studies, 129
 - low calcium diet adaptation, 130–131
 - malnourished child, 135
 - measurement, 135–136
 - phosphorus, 138
 - protein, 139
 - vitamin D deficiency, 136
- Calcium deficiency, vitamin D, 132–133
- Calcium homeostasis, 127–128
- Case-control study, 198
- Catch-up, 8–10
 - genetic influences, 77–78
 - malnourished infant, 9–10
Catch-up (contd.)
protein deficiency, 151-153
zinc deficiency, 151-153
Celiac disease, 123,124
Cell replication, 93
Chile, weight for height, 182
Chinese population, child size, 64,67
Chuliban Longitudinal Study, 168-170
Climate, 89
Cohort study, 198
Colombia, national nutrition surveys, 27,28
Composition, body size, 229-230
Conception, seasonality, 107
Cooking smoke, 99-100,108
Copper, 150
Copper deficiency, 163
Cortisol, 119
Cross-sectional data, 17-24
Cross-sectional study, 166

D
Data quality, 35,179
Dendrite, 210
Desmosine formation, 163
Developed country, 79
Developing country, 79
child size, 62-64
Diarrhea
duration
stunting, 195-199
wasting, 195-199
etiology, 196
linear growth, 26
Down's syndrome, 76
genetics, 91
Dutch famine, 1944-1945, 107-108

E
Egypt, 79-80
Endurance, body size, 222-223
Energy deficiency growth failure, 146
Energy expenditure, 240
Environment
mental development, 201
socioeconomic status, 66-67
Epidermal growth factor, 93
Epiphysis, 75
Eskimo, 89
Essential fatty acid, 161
Estradiol, 116
Ethnicity
growth, 12-13
height, 12-13
linear growth, 176
physical size diversity, 78-79
velocity measurement, 12-13
Europe, 58
secular trend, 70

F
Fetal growth, 76-77,92-96
altitude, 101
caloric requirements, 99
control, 95
first trimester, 92
genetics, 91
maternal alcohol ingestion, 99-100
maternal disease, 101
maternal drug use, 100
maternal influences, 98-101
second trimester, 92
smoking, 101
socioeconomic status, 99
third trimester, 92
uterine shape and size, 98-99
velocity, 92
Fetus, nutrient, 92-96
Fibroblast growth factor, 93
Folic acid supplementation, 106-107
Follow-up duration, 261
Food groups, dietary energy supplied, 32
Formula feeding, 12,13
misuse of commercial, 278
United States, 64
SUBJECT INDEX

G
Genetics, 75-85
 Down's syndrome, 91
 fetal growth, 91
 stature, 57-68
 timing, 76-78
 Turner's syndrome, 91
Geographical distribution, 171
Gestational age, 106
Glucocorticoid, 100, 115
Gonadal steroid, 116
Great Britain
 infant mortality, 70
 19th-century, 58
 stunting, 70
Growth
 catch-up, 8-10
 early childhood, genetic influences, 75-85
 endocrine control, 109-120
 ethnicity, 12-13
 seasonal variations, 8
 somatomedin, 114-115
 in utero determinants, 91-101
Growth curve, 75
 Asia, 85
 boys, 76
 girls, 76
Growth failure
 energy deficiency, 146
 physiological, 78
 protein, 146
 zinc, 146
Growth hormone,
 93, 109-113, 117-118
 clinical assessment, 112
 deficiency, 112-113
 secretion control, 109-111
 age, 111-112
 puberty, 111-112
Growth hormone model, 13
Growth hormone-releasing factor, 109-111
Growth monitoring
 data analysis, 42-45
 increment centiles, 45-47
 length measurement, 41-50
 screening increment standard, 47-50
 slowing detection probability, 51-52
 socioeconomic factors, 52
 study population numbers, 54
Growth pattern, 53
Growth plate, 75
Growth potential, 68
 genetic factors, 35
 standard, 17
Growth retardation, 2
 future research, 279
Growth shift, 77
Growth standards, 79-84
 Asia, 80
 Europe, 79-80
 North America, 79-80
Growth velocity, 2, 92
 Guatemala, Hispanic, 66

H
Haiti, 79-80
HANES I, 65
HANES II, 65
Head circumference, 211-212
 secular trend, 73
Health care outreach, 278
Height
 catch-up, 8-10
 ethnicity, 12-13
 house quality, 60-61
 lean tissue mass, 182
Height velocity, 2, 53
Heterosis, 59
Hispanic, 65-66
 Guatemala, 66
Holland, alternative diets, 32
Honduras, 60-62
Hong Kong, 80–85
Housing, 72
 height, 60–61
Human placental lactogen, 95–96
Hybrid vigor, 59
Hypothyroidism, 125

I
Immune defense system, 186–187
Income, Sri Lanka, 71
India, 266–268
Industrialized country, child size, 62–64
Infancy, length measurement, 41–50
Infant
 formula fed, 4–5
 low birth weight, 5, 6
 normal birth weight, 5, 6
 small-for-date, 5
 stunting, 3
Infant mortality
 Great Britain, 70
 Sri Lanka, 71
 stunting, 33, 36
Infection
 analysis, 185–186
 cofactors, 192–193
 duration, 189–191
 incidence, 188–189
 risk factors, 188–189
 linear growth, 176–178
 severity, 189
 socioeconomic status, 195–196
 stunting, 25–27
 zinc, 162
Inositol hexaphosphate, 157
Insulin, 92–93, 115, 119
 protein, 13
Insulin-like growth factor I, 94–96
Intrauterine growth retardation, 15, 105–106
Iodine deficiency, 124–125
Iron supplementation, 106–107
Isoxuprine, 100

J
Jamaica, 84
 somatomedin C, 122
Japan, 58, 80–85
 secular trend, 88
Japanese population, child size, 64, 67
Jordan, 281

K
Kasongo study, 245
Kerala, India, longitudinal study, 30, 31
KCHARDEP Impact Studies, 168–170
 stunting, 181
Knemometry, 53
Korea, 80–85

L
Lactogen, 93, 95–96
Lag-down, genetic influences, 77–78
Lean body mass, 215
Leg growth, 88
Length increment, 41–50
 centiles, 45–47
 data analysis, 42–45
 successive intercorrelation, 48–49
Length measurement
 4-week interval, 41–50, 53–54
 growth monitoring, 41–50
 infancy, 41–50
 interval between, 49, 53–54
 screening, 47–50
 study population numbers, 54
Linear growth
 associated variables, 170–177
 diarrheal infection, 26
 early childhood, 75–85
 ethnicity, 176
genetic factors, 75–85
geographical distribution, 171
infection, 176–178
measurement, 14
 ethnic differences, 14
 faltering, 14
as monitor, 257–259
patterns, 165–170
seasonality, 171–173
sex, 171
significance, 7
socioeconomic status, 173–176
variability, 7–8
Linear growth retardation, mortality, 245–264
Linear growth velocity, Asian population, 87
Literacy, 71
Load carrying, energy cost, 230–233
Longitudinal study, 167
Low birth weight
 catch-up, 15
 maternal stunting, 271–273
socioeconomic status, 105
Thailand, 72
Low weight for length, 15
Lysyl oxidase activity, 163

M
Macrobiotic diet, 32
Malnutrition, 218–222
cofactors, 192–193
definitions, 1,216
mental development, 210–213
prevalence, 1
recovery, 181
risk factors analysis, 185–186
stature, 57–68
stunting, 25
submaximal work efficiency, 233–235
Thailand, 72
Manganese, 150
Maternal height, mortality, 261
Maternal malnutrition, 36
Maternal nutrition, 276–277
Maternal physical work, 105,106
Maternal placental perfusion, 105,106
Maternal rest, 105
Maternal stunting, low birth weight, 271–273
Matlab Bangladesh, 180
Maturation, delayed, 10
Measles, 25,197
Mechanical efficiency, defined, 217
Menarche, 58,123
Mental development
 environment, 201
 infant to 2 years, 202–203
malnutrition, 210–213
 preschool age, 203–205
psychomotor development, 210
 school-age, 205–208
stunting, 201–209
Milk-based supplement, 153
Mineral nutrition, 157–158
Monitoring, 278
Morbidity, risk factors analysis, 185–186
Mortality
 causes, 263–264
 infection, 191–192
linear growth retardation, 245–264
 maternal height, 261
New Guinea, 260–261
stunting, 245–264
causality, 256–257
Multiplication-stimulating activity, 94
Muscle cell mass, 218

N
National Center for Health Statistics, 79
Nepal, 165–178
Nerve growth factor, 93
New Guinea, 161
 mortality, 260–261
Nitrogen, 145–146
North America, 58
 child size, 64–66
Nutrient, body store, 144
Nutrient deficiency, 143–158
 types, 143–144
Nutrient supplementation, 107
Nutrition, endocrine adaptation, 117–120
Nutritional deficiency
 Type I, 145
 Type II, 145–149
Nutritional factors, 1
Nutritional growth retardation, 127–133

O
Oral rehydration therapy, 196–197
Osteoporosis, 138–139

P
Parasite, 180
Parturition, 125
Paternal malnutrition, 36
Peptide growth factor, 92–93
Phosphate deficiency
 stunting, 137
 Thailand, 137
Phosphorus, 145–146
 calcium, 138
Physical fitness, definitions, 216
Physical work capacity, definitions, 216
Phytic acid, 157
Placenta, 96–98
 amino acid transport, 98
 blood flow, 96, 97
 human placental lactogen production, 96
 morphological abnormalities, 96
 nutrient delivery, 97–98
 peptide growth factor, 93
 steroid hormone metabolism, 96
 umbilical cord abnormalities, 96–97
Plasma phosphate, 136
Population density, 36
Potassium, 145–146
Potassium supplementation, 157
Poverty, 268–269
 factors, 265
 previous generations, 64
 stature, 57–68
 correlation coefficient, 70–71
 regressions, 70
 variance, 71
Thailand, 72
United States, 65–66
 Blacks, 65–66
 Europeans of non-Hispanic origin, 65–66
 Hispanics, 65–66
Poverty syndrome, 282
Prematurity, 5, 15
 growth factors, 125
Productivity, body size, 223–225
Propranolol, 100–101
Protein, 153–155
 calcium, 139
 growth failure, 146
 insulin, 13
Protein deficiency, catch-up, 151–153
Protein-calorie malnutrition, 182
Protein-energy malnutrition, 26, 185–187
Psychomotor development, mental development, 210
Pubertal growth spurt, 10

R
Racial group, physical size diversity, 78–79
Reference population
 age distribution, 18–24
SUBJECT INDEX

geographical distribution, 18–23
socioeconomic factors, 24
Research study
data problems, 2
variables, 2
Respiratory infection, 197
Retardation, 210, 211
Ritodrine, 100

S
Salicylate, 100
Seasonality, 53–55, 123, 171–173
conception, 107
weight for height, 181
Sex, 171
Sex steroid, 116–117
Sexual maturation, 226–229
Singapore, 80–85
Single-photon absorptiometry of bone, 135–136
Skeletal growth
hormones, 115–117
normal, 75
Skeletal maturation, 72
Small bowel overgrowth, 140
Smoking, 101
Social class, stunting, 62
Socioeconomic status
anthropometric variables, 60–61
environment, 66–67
fetal growth, 99
high, child size, 62–64
infection, 195–196
linear growth, 173–176
low birth weight, 105
stunting, 60–62, 282
wasting, 60–62
Sodium, 145–146
Sodium supplementation, 157
Somatomedin, 93, 94, 123
growth, 114–115
Somatomedin C, 94, 117–118
Jamaica, 122
Somatostatin, 110
Soya-based supplement, 153
Sri Lanka
income, 71
infant mortality, 71
Stature
abnormal genetic makeup, 76
docrine disturbance, 122
etic factors, 57–68
etic influences, 76
heritable trait, 76
malnutrition, 57–68
poverty, 57–68
relation coefficient, 70–71
regressions, 70
variance, 71
secular trends, 58–59
Stunting
adaptation, 270–271
ge distribution, 18–24
ology, 283
auses, 25, 30–33
cost, 269–273
diarrhea duration, 195–199
demiology, 17–33
ence population, 17–24
gographical distribution, 18–23
Great Britain, 70
cremental deficit, 6
as indicator, 280–281
fant, 3
fant mortality, 33, 36
fection, 25–27
KHRDEP Impact Studies, 181
malnutrition, 25
measurement error, 38
mental development, 201–209
orbidity risk, 185–193
ortality, 245–264
usalty, 256–257
atural history, 1–7
phosphate deficiency, 137
olicy, 273–279
programs, 273–279
Stunting (contd.)
 psychosocial, 72
 public health policy implications, 265–284
 secular trends, 27–30
 significance, 265–284
 social class, 62
 socioeconomic status, 24, 60–62, 282
 supplementation, 38
Third World, 3–5
 beginnings, 3
Type II deficiencies, 150–151
 vs. stunted, 2
 wasting, 36–38, 183
Sudan, 41–50
Sunlight, 137
Supplementation, 277
 effects, 161, 162
 milk-based, 15
 non-milk-based, 15
 stunting, 38
 wasting, 38
Surveillance, 278

T
Taiwan, 80–85
Testosterone, 116
Thailand, 80–85
 low birth weight, 72
 malnutrition, 72
 phosphate deficiency, 137
 poverty, 72
Third World
 stunting, beginnings, 3
 vs. industrialized countries, 4–5
Thyroid, 119–120
Thyroid hormone, 93
Thyroxine, 115
Tissue growth factor, 93
Togo, 79–80
Transforming growth factor, 93
Tuberculosis, 199
Turner's syndrome, 76
 genetics, 91

U
Undernutrition, endocrine disturbance, 122
United Nations Relief and Works
 Agency for Palestinian Refugees, surveys, 27–30
United States
 breast feeding, 64
 formula feeding, 64
 nutritional changes, 70
 poverty, 65–66
 Blacks, 65–66
 Europeans of non-Hispanic origin, 65–66
 Hispanics, 65–66
 secular trend, 70
United States Centers for Disease
 Control, 17–18
United States National Center for
 Health Statistics, 17–18, 65
Urinary calcium, 135

V
Vegetable diet, mineral availability, 157–158
Velocity measurement, 260
 ethnicity, 12–13
Vertical intervention program, 282–283
Vitamin A, zinc, 162
Vitamin C, 150
Vitamin D, 150
 calcium deficiency, 132–133
Vitamin D deficiency, 137
 calcium, 136
W
Wasting
 diarrhea duration, 195–199
 secular trends, 27–30
 socioeconomic status, 60–62
 stunting, 36–38, 183
 supplementation, 38
Weight for age, 1
Weight for height, 1, 89, 124
 Chile, 182
 seasonality, 181
Work capacity
 body size, 215–243
 component, 240
 growth, 229

Z
Zinc, 145–146, 155–157
 growth failure, 146
 infection, 162
 vitamin A, 162
Zinc deficiency
 anorexia, 148
 catch-up, 151–153
Zinc supplementation, 155
 energy, 160
 protein, 160
 sex differences, 156